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FAST SPARSE RECONSTRUCTION:
GREEDY INVERSE SCALE SPACE FLOWS

MICHAEL MOELLER AND XIAOQUN ZHANG

ABSTRACT. In this paper we analyze the connection between the recently pro-
posed adaptive inverse scale space methods for basis pursuit and the well-
known orthogonal matching pursuit method for the recovery of sparse solutions
to underdetermined linear systems. Furthermore, we propose a new greedy
sparse recovery method, which approximates ¢! minimization more closely. A
variant of our new approach can increase the support of the current iterate by
many indices at once, resulting in an extremely efficient algorithm. Our new
method has the advantage that there is a simple criterion to determine a pos-
teriori if an £! minimizer was found. Numerical comparisons with orthogonal
matching pursuit, weak orthogonal matching pursuit, hard thresholding pur-
suit and compressive sampling matching pursuit underline that our methods
indeed inherit some advantageous properties from the inverse scale space flow.

1. INTRODUCTION

Compressed sensing and techniques exploiting sparsity in data analysis, image
processing, and inverse problems recently gained enormous interest. Representing
unknowns for (underdetermined) systems of linear equations in appropriate bases or
dictionaries can be reformulated as finding the sparsest solution of a linear system,
i.e., solving

(1.1) min |ug such that Au = f,

where | - | is the so-called £° norm, which denotes the number of nonzero elements
and is not a norm in the mathematical sense. The ¢° norm is the natural measure
for sparsity. The quantity f € R™ is the given (or measured) data and A € R™*"™ is
the sensing matrix, usually with m much smaller than n. Unfortunately, minimizing
the ¢° norm is a highly nonconvex problem. Solving (1)) exactly has been shown to
be NP-hard [29], such that it quickly becomes infeasible in dimensions is interesting
for practical applications. There are two different general strategies for providing
an approximation of the sparsest solution.

The first is to use the convex relaxation by minimizing the ¢!- instead of the ¢°
norm,

(1.2) min [|ul|y such that Au = f.
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Various important results have been obtained on the equivalence of £° and ¢! min-
imization under different conditions, we refer e.g. to [9L[10,12L13].

The second approach is to develop greedy methods to approximate the ¢° mini-
mizing solution. One of the most popular greedy methods is the orthogonal match-
ing pursuit (OMP) as proposed in [22,28,[31]. While OMP (like all greedy algo-
rithms) is based on heuristic assumptions, one can show that under certain condi-
tions on the matrix A, OMP recovers the ¢Y minimizing solution exactly [30].

Comparing the two approaches, the ¢! minimization allows more analysis and
more general theoretical exact recovery results. Furthermore, ¢! minimization of-
ten yields better recovery results in numerical experiments, particularly for ill-posed
matrices A, which we will confirm in our numerical results section. However, solv-
ing the minimization problem (I2)) requires the solution of a nondifferentiable con-
strained optimization problem, such that its numerical solution remains a challenge.
Although many very efficient numerical methods for ¢! minimization have been pro-
posed (cf. [2[7,[8[18,126L35,[36], or the references on the websites http://dsp.rice.
edu/cs or http://nuit-blanche.blogspot.com), greedy approaches often significantly
outperform convex optimization methods in terms of speed such that in applica-
tions that deal with extremely high dimensional problems or require fast processing,
greedy methods are often preferable (cf. [I4LT9L2T]).

The goal of this paper is to close some parts of the gap between the greedy and
convex approaches to sparse reconstruction. Our motivation will be to start from
the recently proposed adaptive inverse scale space method (alISS) [6] and see that
a small tweak in the method leads to a greedy method, which on the one hand is
similar to OMP but on the other hand approximates the £! minimization idea much
more closely. We will analyze the proposed method and prove that it has similar
exact recovery guarantees as OMP while it additionally provides the opportunity to
check a posteriori if the solution we obtain is the ¢! minimizing solution. The latter
only depends on the coincidence of certain signs and, of course, does not require
the knowledge of the ¢! minimizing solution itself.

Furthermore, we will look into methods that increase their support more quickly:
Note that OMP always adds a single component to the support at each iteration,
and, while the alSS method can theoretically change its support arbitrarily, it has
been observed in [6] that the support often only changes by a single or at least
only very few indices. For very high dimensional problems (e.g. with a one million
dimensional u), even a very sparse true solution will have several thousand nonzero
entries. For these kinds of problems the OMP strategy of adding only a single
index per iteration does not seem to be ideal since the algorithm will need at least
several thousand iterations, even in the best case where the method only acts on the
support of the true solution. We will therefore consider including multiple indices
in the support at each iteration similar to the idea of weak orthogonal matching
pursuit (WOMP) [T71[30].

We will compare our proposed method to the alSS method, OMP, WOMP,
(due to their similarity) as well as to hard thresholding pursuit (HTP) [16] and
compressive sampling matching pursuit (CoSaMP) [24] as a recently proposed state
of the art method, which immediately has a support of desired size.
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The rest of the paper is organized as follows. In the next section we will give an
(incomplete) summary of sparse reconstruction methods. While extremely many
greedy reconstruction methods as well as ¢! minimization techniques have been
proposed, we will particularly focus on OMP, WOMP, HTP and CoSaMP among
the greedy methods, and recall the aISS method as an ¢' minimization technique.
The reason that we choose alSS as the compared ¢! minimization method is that
in [33], detailed comparison of several £! minimization techniques (including aISS)
have been made for different compressive sensing settings and it has been observed
that alSS is the fastest or among the fastest with highest accuracy. In Section Bl
we will see how similar OMP and the alSS method are and propose a small change
in the aISS method to obtain a new greedy method, which is related to OMP but
approximates ¢! minimization more closely. We will see that the ideas of WOMP
can also be adapted to our new method to obtain quicker, more greedy results.
Furthermore, we will prove that our method allows us to see a posteriori, if the
result is also the ¢! minimizing solution. In Section @] we will compare the results of
all algorithms in a series of numerical experiments and see that our newly proposed
algorithm indeed inherits many desirable properties from the alISS method, while
being as fast as OMP or WOMP. Finally, in Section [ we will draw conclusions and
point out future areas of research.

2. STATE OF THE ART

2.1. Greedy methods for sparse recovery. Many greedy methods for sparse
recovery have been proposed, like for instance, iterative hard thresholding (THT) [4],
compressive sampling matching pursuit (CoSaMP) [24], subspace pursuit (SP) [11],
iterative thresholding with inversion (ITI) [20], hard thresholding pursuit (HTP)
[16] and many others. Due to the huge number of greedy sparse recovery methods we
will neither summarize nor compare our proposed method to all of them. Instead,
we will focus on the most related methods, OMP and WOMP, and include the
recently proposed HTP and CoSaMP methods in our comparison.

2.1.1. Orthogonal matching pursuit. OMP, as proposed in [22128[3T], is a classical
and popular greedy recovery method. It iteratively adds components to the support
of the approximation ©* whose correlation to the current residual is maximal.

To be more precise the pseudocode for OMP is given in Algorithm [I below. We
can see that OMP has three main iterative steps:

(1) Add an index 7 to the current index set Iy, such that the correlation between
the i column of A and the current residual r; is maximal.

(2) Solve a linear least squares problem on the index set I, to obtain the next
approximation u;. We used Py, to denote the projection of u onto the
index set I.

(3) Update the residual.

Clearly, at the k-th iteration, u” is k-sparse such that the algorithm will converge
after at most m steps for A € R™*". OMP is fast and easy to implement.
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Algorithm 1 OMP

Parameters: A, f, threshold > 0
Initialization: ro = f, Iy = 0
while ||ry|| > threshold do
1. Compute I = I;,_y Ui with i such that [(ATry);| = [|AT 7kl

2. Compute uy, = argmin, {||APr,u — f||*} and set (ug); = 0 for i ¢ I,

3. Update 141 = f — Auy
end while
return wu;

For theoretical guarantees, Tropp considered the following quantity in [30]:

Definition 2.1. We say that a uops with Augpy = f and A having normalized
columns satisfies an exact recovery condition (ERC) of order « if

(2.1) max ||(APp)Ta| < a,
igl

where I is the index set of the support of uqpt, Pr is the projection onto the index
set I, a; is the i-th column of A and the superscript  denotes the pseudoinverse of
the matrix.

Theorem 2.2 (from [30]). If a solution v with Au = f satisfies an ERC of order
a <1, then OMP recovers u exactly.

While OMP shows nice recovery properties under the assumption of an ERC, it
seems to yield rather weak recovery results under the popular restricted isometry
property (RIP) [19], which is commonly used as a criterion for measuring up to
which sparsity ¢! minimization or greedy approaches can recover a uqp; exactly.

2.1.2. Weak orthogonal matching purswit. WOMP is a faster and more greedy ver-
sion of OMP [I7,[30]. It converges much faster since it does not add only a single
index to the support at each iteration, but all those correlation to the current
residual is large enough. The WOMP method is given as Algorithm [2] below.

Algorithm 2 WOMP

Parameters: A, f, p <1, threshold > 0,
Initialization: rq = f, Iy =0
while ||r|| > threshold do

1. Compute I, = I, U {i | [(ATr1)il > pl|l ATyl

2. Compute uy, = argmin,, {||AP;,u — f||*} and set (uy); = 0 for i ¢ Iy,

3. Update 141 = f — Auy
end while
return wu;

We can see that the only difference to OMP lies in the first step, where all
indices for which the absolute value of AT7* is close enough to the maximal value,
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are included in the support. The parameter p controls how much more greedy
WOMP is in comparison to OMP. While WOMP comes with the advantage of
faster convergence, one pays for the additional speed by a reduced exact recovery
guarantee as shown in [30].

Theorem 2.3 (from [30]). If a solution u with Au = f satisfies an ERC of order
p, then WOMP recovers u exactly.

2.1.3. Compressive sampling matching pursuit. CoSaMP has been proposed by
Needell and Tropp in 2009 as a very efficient greedy recovery algorithm. Instead
of iteratively increasing the support of the solution, the desired support size is an
input parameter of the algorithm. In this sense CoSaMP can rather be seen as an
approximation for solving

min || Au — f||? such that |ulp < s,
u

for a given sparsity level s. Although this formulation is very similar to OMP if s
is given, it seems that in general a stopping criterion on the residual ||Au — f|| is
more intuitive than the (unknown) sparsity level.

In general, CoSaMP consists of five iterative steps: In the first step the 2s in-
dices for which the correlation between columns of the sensing matrix and the
current residual is maximal are determined. In the second step, these components
are merged with the previous support. As the third step CoSaMP determines
the least squares solution with the increased support (of size 3s). Next, the least
squares solution is pruned such that only the s largest components in magnitude
are kept or, in other words, hard thresholding is performed. Finally, the residual
is updated based on the pruned signal from the previous step. Pseudocode for the
complete CoSaMP algorithm is given as algorithm [3 below, where we denote the
hard thresholding operator, i.e., the operator setting all but the s largest compo-
nents in magnitude of u to zero, by Hg(u). In our numerical experiments, we used
the CoSaMP code from [3] with an additional upper bound of 500 on the total
number of iterations.

Algorithm 3 CoSaMP
Parameters: A, f, sparsity level s,
Initialization: rq = f
while Stopping Criterion do
1. Compute Q1 = supp(Has(ATry))

2. Compute Ip+1 = Qgr1 U supp(ug)

3. Determine @41 = argmin,, {||AP,,,u — f[|*}
and set (Gig41); =0 for ¢ & I4q

4. Prune ug11 = Hg(Ugy1)

5. Update rg11 = f — Augyq

end while
return uyg
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2.1.4. Hard thresholding pursuit. Recently, the HTP algorithm was proposed by Si-
mon Foucart in [16]. HTP can be seen as a combination between IHT and CoSaMP:
For a desired sparsity level s, HTP performs a gradient descent step on the objec-
tive function (2% = u* + pAT(f — Au*)), determines the index set I as the indices
corresponding to the s entries of largest magnitude in z* and obtains the next it-
erate uFt1 by solving a least squares problem on I. HTP is given as Algorithm [
below. Note that convergence of HTP can only be guaranteed for a small enough
time step, more precisely, for v|A||3_,, < 1, where ||Al|2_,2 denotes the induced
2-norm of A.

Algorithm 4 Hard thresholding pursuit

Parameters: A, f, sparsity level s, step size v,
Initialization: u® =0 % = f, 20 =
for k=0to K —1do

1. Gradient descent on z: zF+t1 = ¥ 4+ v ATk

2. Update I*+1 = supp(H,(zF*1)).

3. Compute u**! = argmin,, {||APp+1u— f|*} and
set (uft1); =0 for i ¢ IF+1

4. Update 7441 = f — AuFt!

end for

return u*€

The idea behind HTP was generalized in [19] by proposing a new family of sparse
greedy reconstruction algorithms (the OMPR family), one member of which is HTP.
While theoretical guarantees based on the restricted isometry property (RIP) were
optimal for changing just a single index in I* (a particular algorithm of the OMPR
algorithm family), numerical experiments did not show any degradation in recovery
ability when using HTP [19], such that we will focus on a comparison to the HTP
method in this paper.

Similar to CoSaMP, the major difference between HTP and OMP is that HTP
fixes the size of the index set I by an input parameter s and immediately considers
larger supports. While this makes the solution of the least squares problems more
expensive, one can hope to significantly reduce the number of iterations needed for
convergence. The clear drawback of fixing the sparsity level s is that s is unknown
in practical applications. The OMP approach of increasing the index set I until a
desired accuracy ||Au® — f||? is reached is much more intuitive and it might take
several runs of HTP to find a suitable sparsity level s. Note that even knowing the
sparsity level of the true solution does not mean that HTP actually converges to a
u with Au = f.

2.2. The convex relaxation: ¢! minimization. While the previous subsection
summarized some greedy techniques for sparse recovery, let us now focus on sparse
recovery by minimizing the convex function that approximates the #° norm most
closely, i.e., solving the /! minimization problem (LZ). It is interesting to see that
the adaptive inverse scale space (aISS) method [6] allows us to write /! minimization
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as an iterative method that keeps track of a support and solves a low dimensional
least-squares type problem at each iteration (similar to OMP, WOMP, CoSaMP,
or HTP). We will summarize the alSS approach in the next subsection.

2.2.1. The adaptive inverse scale space method for £* minimization. Consider the
general optimization problem

(2.2) min J(u) such that Au = f

u

with A € R"™™ f € R", v € R™ and a convex functional J. It is well known
that the so-called Bregman iteration (BI) provides an efficient iterative method to
determine the above minimizer [25]. Particularly, BI was shown to be equivalent
to the augmented Lagrangian (AL) method for the above problem (cf. [I5l[35]). BI
and AL find the solution to (Z2]) by constructing the sequence

(2.3 W = argmin J(w) + 5| Au — fI? — (o, u).

(24) pk+1 :pk + AAT(f _ 14,“]64*1)7

which involves an unconstrained optimization problem and an explicit update of the
dual variable p**!, where the optimality condition of (23] combined with equation
@3) yields p**! € 9.J(u**1). Note that the second equation can be written as

k+1 _ ok
(2.5) 7% = AT(f — AuF*).

Interpreting the parameter \ as a discrete time step, one finds BI to be backward
time stepping on the evolution equation

(2.6) Op(t) = AT(f — Au(t))  such that p(t) € dJ(u(t)).

The above differential inclusion is called inverse scale space flow and was analyzed
in [5].

The main finding of [6] was that in the case of J(u) = ||ul|1, Equation (2] can be
solved exactly without any time discretization due to its discrete nature. While the
subgradient p(t) evolves continuously (piecewise linear), the solution u(t) remains
piecewise constant. This allowed the authors of [6] to determine the subgradient
p(tF) at some time ¢* at which the solution is changing, before actually knowing
the solution u(t*). Due to the characterization of the ¢! subdifferential

(2.7) p € |lulli & { b \pjlggng?l% glsqél, -
this restricts the support of u(t*) to the set I = {i | |p;(t*)| = 1} and leads to a
sequence of very low dimensional optimization problems. This approach was called
the aISS method and is given as Algorithm [ below. It has been shown that the
aISS algorithm converges in finitely many iteration to an ¢! minimizing solution.
More specifically, one obtains ||Au(t) — f||> € O(1/t) as well as a convergence rate
of u(t) to an ¢! minimizing solution in the Bregman distance. We refer to [6] for
a detailed convergence analysis of the alSS method. Also note that the theory for
solving the inverse scale space flow equation exactly without any discretization was
extended in [23] to arbitrary regularizations J(u) that are polyhedral.

Note that a major difference between the alSS method and the BI is that the
optimization problem in the primal variable is low dimensional in the alSS algo-
rithm. In BI, one first computes the full primal variable u**1 and then updates
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Algorithm 5 alSS Method

Parameters: A, f, threshold > 0
Initialization: rq = f, t; =1/ HATTOHOO , p(t) =t1 ATrg
while ||r|| > threshold do

1. Compute Iy = {i | [pi(tx)| = 1}

2. Compute u(t) = argmin, {||APru — f||*} subject to u(tx)p(ty) > 0
3. Compute the residual r, = f — Au(tF).

4. Obtain t54; as
(28)  tepr = mint | £> 6037 ()] = Lus(te) = 0,p5(6) # st}
where
(2.9)  p;(t) = ps(te) + (t = te) (AT
5. Update the dual variable p(t) via [29) with ¢ = t541

end while
return u(ty)

the dual variable p**! accordingly. In the aISS method, one knows the subgra-
dient p(t*) before knowing the corresponding solution, such that one can use the
characterization ([Z7)) to significantly reduce the size of the optimization problem.

On the other hand, the parameter A in BI can be chosen arbitrarily large, while
the corresponding quantity in the aISS flow—the next time step t*T1 — tF—is de-
termined by the previous subgradient as well as the correlation between the current
residual and the columns of A by considering ATry in (23). While the support in
BI changes almost arbitrarily, the support in the aISS method is often increased by
a single index per iteration. In this sense, and also due to the consideration of the
correlation between the current residual and the columns of A, the alSS method
has many similarities to the greedy sparse reconstruction method OMP.

In the next section we will first point out similarities and differences between
OMP, WOMP, HTP, CoSaMP and the alSS method, before adapting some ideas of
OMP and WOMP to the alSS flow to obtain a new sparse reconstruction method.

3. APPROXIMATING THE INVERSE SCALE SPACE FLOW

3.1. Similarities and differences between OMP, HTP, CoSaMP and the
alSS method. As an overview, we have summarized the main differences between
the OMP, WOMP, HTP, CoSaMP and the aISS method in Table [1l

All five, OMP, WOMP, CoSaMP, HTP, and the alSS method, modify the index
set I based on the correlation of A to the current residual, which also has the
interpretation of the direction of steepest descent of the objective functional. While
the size of the index set varies in OMP, WOMP and alSS, it stays fixed for HTP and
CoSaMP. It is interesting to see that if AT f has a unique maximum, the first step of
OMP and the aISS method is exactly the same. Both methods start by computing
AT f and determine the first approximation u; by the best approximation only
using the maximal component of AT f. After this first step, OMP and aISS differ:
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While OMP and WOMP only take the correlation to the current residual into
account, the alSS method is based on the history of all previous correlations, i.e.,
pFtl = pk 4+ (#FF1 — tF) AT for alSS vs. just ATr* for OMP.

The index set in HTP is determined by the largest values in the quantity resulting
from moving from the current iterate into the direction of steepest descent. While
the aISS method also moves in the direction of steepest descent, it adapts the
time step, such that the quantity p(t*) always maintains the interpretation of a
subgradient of u(t**!). Note that having a u* versus a p* in the formula for
determining the index set makes a significant difference and, for instance, occurred
in the ¢! minimization techniques iterative soft thresholding (cf. [1] and references
therein) versus linearized Bregman iteration [§].

The CoSaMP method takes yet a different approach to sparse recovery. In a
first step it relaxes the constraint that the sparsity of the solution has to be less or
equal to s and takes up to 3s indices as a support into account. After finding the
optimal solution on this larger/relaxed index set the hard thresholding operator is
applied to reduce the solutions support size back to s.

A difference between the alSS method and all greedy approaches is that the low
dimensional optimization problem is a least squares problem for OMP, WOMP,
CoSaMP and HTP, while it is a sign-constrained least squares problem for the
alSS method. Although this step can make the alSS algorithm significantly more
expensive, it allows indices to leave the support (opposed to OMP, WOMP), and
seems to make the difference between greedy approaches and ¢! minimization. (For
details regarding the reason why the sign constraint allows indices to leave the
support we refer to [6]). By proposing a new greedy method whose only difference
to the aISS method is to replace the sign-constrained least squares problem by
a simple least squares problem, we will be able to investigate in our numerical
experiments (Section M) how much of a difference the type of least squares problem
makes in practice.

Finally, let us mention that the computational costs per iteration are similar in
the sense that each algorithm has to multiply by A7 and solve a least squares type
of problem. However, the actual costs and runtimes can be quite different as we will
confirm with our numerical experiments in Section @l As mentioned already, the
alSS approach can be more computationally expensive since it requires the solution
to obey additional sign constraints. Another difference is the size of the least
squares problems. For instance, the first iterations of OMP are very cheap since
the support set contains only very few indices. In comparison, HTP immediately
solves problems of size s and CoSaMP even problems of size 3s. However, one
can hope to need significantly fewer iterations with HTP or CoSaMP. Since OMP
needs at least s iterations for s sparse solutions the advantage of having to take
fewer iterations with HTP and CoSaMP (also in comparison to alSS) will likely
increase with increasing s.
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3.2. The greedy inverse scale space (GISS) method. Considering the sim-
ilarities between OMP, WOMP, CoSaMP, HTP and the alSS method one could
interpret the greedy methods as (faster) approximations of the inverse scale space
flow. Thus, considering that ¢! minimization often yields very good/better recov-
ery results than greedy methods, it seems natural to develop a greedy method that
approximates the alSS flow even more closely than OMP.

While the fixed index set from HTP seems to be difficult to adapt to the alISS
framework, the ideas of OMP and even of WOMP are straightforward to include.
To obtain a greedy method like OMP which approximates the ¢! solution more
closely, we propose to replace the constrained minimization of the alISS flow by an
unconstrained one. We will refer to this method as the greedy inverse scale space
(GISS) method. In terms of Table [Il we will see that the only difference between
GISS and OMP will be what the change of index set is based on, ATr*¥ for OMP
and p* + (t*+1 — k) ATr* for GISS. Our numerical experiments in Section @ show
that GISS indeed inherits some desirable properties from the alSS method, approx-
imating ¢! minimization much more closely and yielding better recovery results.
The GISS algorithm (aISS method after replacing the constrained minimization by
an unconstrained minimization) is given as Algorithm [ below.

Algorithm 6 GISS method

Parameters: A, f, threshold > 0
Initialization: To = f, t1 = 1/ HATT()Hoo’ p(tl) =1 ATT‘Q
while ||7x|| > threshold do

1. Compute Iy = {i | p;(tx)| = 1}

2. Compute u(ty) = argmin,, {||APru— f|]*}
3. Compute the residual rp = f — Au(tF).

4. Obtain tyy1 as
(3-1) e =min{t | £ > 1,35 < [p; (D)) = 1, u;(tk) = 0,p;(t) # p;(t)},
where
(32)  p;(t) =ps(te) + (t = te)(ATr);
5. Update the dual variable p(t) via B.2]) with ¢ = 541

end while
return u(ty)

First, note that the above algorithm converges to a solution of Au = f: At each
iteration, the new time step t* is chosen in such a way that an index i enters the
index set Ix. Once a certain index j is in I the optimality condition to step 2
yields (AT(f — Au’“))j = 0, such that it never leaves the index set. If no more
try1 exists, then we have to have ATr, = 0, which automatically yields u(tz) €
argmin, ||Au — f||* and the algorithm has converged. Naturally, this means the
GISS algorithm converges in a finite number of iterations and, more precisely, the
number of iterations never exceeds the rank of A, i.e., m for A € R™*™ in the
typical compressed sensing case.
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Analogous to [6] one can show the strict decrease of ||Au — f||? at each step k as
well as the exact recovery of any one sparse solution in a single step given that A has
normalized columns. It is interesting to see that even the result about recovering
solutions that meet an ERC exactly can be shown similarly to Proposition 4 in
[6]. Before we actually state and prove this result, let us consider additionally
incorporating the idea of WOMP into our framework. Our idea is to take a larger
step into the current direction of steepest descent and project the resulting p(t* +1)
back onto the unit > ball. This slightly modified version of the GISS method is
given as Algorithm [7 below. We will denote the modification by GISS? where p is
the factor by which we enlarge the usual time step taken by GISS. Note that p > 1
and that GISS! is the same as GISS.

Algorithm 7 GISS” method

Parameters: A, f, p > 1, threshold > 0
Initialization: To = f, t1 = 1/ HATT()Hoo’ p(tl) =1 ATT‘Q
while ||| > threshold do

1. Compute Iy = {i | [ps(tx)| = 1}

2. Compute u(ty) = argmin,, {||APru — f|]*}
3. Compute the residual rp = f — Au(tF).

4. Obtain ty 41 as
(3.3)  trpr = pmin{t | ¢ >t 35 ¢ pi(H)] = 1,u;(tk) = 0,p;(t) # p;(te)},
where
(34)  py(t) = py(t) + (¢ — ) (ATr0);

5. Update the dual variable p(t) via 4] with ¢t = 54, and
set p(t*1) = sign(p(t"*1)) min(|p(t*+1)[, 1)

end while
return u(ty)

3.3. Analysis of the GISS?” method. The following exact recovery result (similar
to OMP/WOMP) is shown for GISS? which, due to GISS* being the same as GISS,
holds for all versions of our proposed algorithm:

Proposition 3.1. Let uep: with Augp = f meet an ERC of order % and let I be

the support of wepe. Then the GISS® algorithm recovers wop: in at most |I| steps,
since |p;(t)| <1 for allt and all j ¢ I.

Proof. We prove the above inductively. At ¢ = 0, we have p(t) = 0 and u(t) = 0
such that the support of u(t) clearly is a subset of I. Now let the support of u(t*)
be a subset of I, particularly, let |p;(t*)] < 1 for all i ¢ I. We will show that
Ipi(t¥11)| < 1 for all i ¢ I. Based on the updated formula for p we have

(3-5) P ) = p(t?) + (= /) AT A(uope — u(t’))
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Since u(t/) is supported on a subset of I for j < k we know that
(3.6) topt — u(t?) = Pr(tops — u(t))),

where P; denotes the projection onto the index set I. Projecting equation (3.5
onto the index set I as well as using (B6) yields

(3.7) Pr(p(#"*") = p(#')) = (7" — /) PLAT APy (uopy — u(t)))
(38) = (/T — ") Pr(uops — u(t?)) = (PLATAP) ™! (Pr(p(t') — p(t7))) -
Inserting the above back into ([B.5]) leads to

(3.9)  p("*h) —p(t) = AT AP(PrATAP) ! (Pr(p(t't) - p(#7)))

=((AP)HT
(3.10) = AT((AP)DT (Pr(p(t*) = p(7))) -
Now, we sum up all the above equations for 7 = 0 up to j = k to obtain
(3.11) p(t+1) = AT (AP Prp(t+Y).

Now the GISS? algorithm is designed such that ||p(t)|lec < p. Let us consider (311
at an index ¢ ¢ I and denote the i-th column of A by a;. Then

(3.12) i (1) = af (APD))T Prp(t*+h),
(3.13) < llai ((APD)H |1y | Prp(t™ ) |,

—_————

<p
(3.14) < pll(APr) a1,
ERC

(3.15) < 1L
Thus, indices i ¢ I do not enter the support of u(t*) for any k. O

To avoid confusion regarding the meaning of ERC, we would like to point out
that although [32] proves a theorem saying that ERC is met whenever the coherence
of the matrix A is small enough, ERC itself does not imply anything about the
coherence of the dictionary. It is a rather general criterion which, however, is very
difficult to verify since it depends on the support of the sparsest solution we are
looking for. Theorem 3.10 in [32] shows that whenever an ERC is not met there exist
signals which OMP fails to recover. In this sense the ERC is the best criterion that
guarantees the exact recovery with OMP. Our previous theorem therefore shows
that the GISS algorithm has at least the same exact recovery guarantees as OMP.
Looking at the proof of Theorem 3.10 in [32] we can see that the failure to meet
an ERC leads to OMP selecting a nonoptimal atom in the first step. Since the
first steps of OMP and the GISS method coincide, the GISS algorithm will also
pick a nonoptimal atom, such that OMP and GISS have the same exact recovery
guarantees.

Note that exact recovery guarantees are always based on worst case scenarios and
two methods having the same theoretical guarantees does not necessarily mean that
they show the same recovery properties in practice as we will see in the numerical
experiments section.

We introduced our algorithm as a greedy approximation to the alSS method,
which means that the solution of the GISS? algorithm should ideally be somewhat
close to being an ¢! minimizer. The following results allow an a posteriori estimate
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of how close the GISS! solution is to be ¢! minimizing. Later we will generalize
this result and show that the GISS? solution is close to a weighted ¢! minimizing
solution with weights in [%, 1].

Theorem 3.2. Let @ be an {1 minimizing solution of Au = f, and let u(t™) be the
solution of Algorithm [0 We denote by

M = {i | wi(t™) # 0, sign(u;(t")) = —sign(p;(t"))}

the set of indices i where the u;(t) is nonzero but has a different sign than p;(t%).
Then the estimate

(3.16) lalls > ()] =2 (Jua(#)] = sign(w; (%)) @)
ieM
holds.
Proof. Based on the structure of the GISS algorithm we know that |p;(t%)| < 1 for

indices i which are not in the support I of u(t®). Now let us define an element $
by

(3.17) pi = { s1g§21(¢tf(<t)K)) lfélfe.j’
Obviously, p € 9||u(t)||1 such that we can conclude
(3.18) 0 < [[all = [lu@) 1 = (B, @ — u(t™)).
Now the GISS! algorithm produces a p(t¥) € range(AT), which means that
(319) (), = (t) = (. A, - Au(t’)) =0,
—f e

Hence we can add zero in equation (3I8) to obtain
(3.20) 0 < JJall = lut™) s = (B — p(t*), @ — u(t")).

Let us look at the term (p—p(t¥), 4 —u(tX)). By definition of p, this term vanishes
outside of the support 1. On I we can divide the resulting sum in components where
p(t¥) has the ‘wrong’ sign, i.e., i € M, and components where p(¢*) has the ‘right’
sign, i.e., 1 € M°.

(B —p(t"), = u(t™)) = (5 — p(t"))i(d — u(t™)),

el
= (= p(t"))i(@ —u(t™))
ieM
+ Y B ptF)i(a —u(t™)),
i€(INMe)
= Z (sign (u; (7)) + sign(u; (¢7))) (@ — u(t™));
ieM
+ > (sign(ui(tX)) — sign(ui(t9))) (@ — u(tX));,
ie(INMe)
(3.21) = 2 (sign(ui (%)) @ — us (7)) -

ieM
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Inserting this part into (320]) we obtain

(3.22) lally > flu )l +2 ) (sign(us(t5)) @ — i (£)]) - O
ieM
Note that Theorem assumed @ be an ¢ minimizing solution of Au = f such
that the inequality ||a||; < [|u(t%)]; is trivial.
The above theorem allows an easy conclusion for the GISS algorithm

Conclusion 3.3. If {i | u(t¥); # 0, sign(u;(t%)) = —p;(t%)} = 0, then the GISS
algorithm has determined an £* minimizing solution.

It is remarkable that we obtain an extremely simple way to check if our greedy
method converged to the ¢! minimizer.

The above criterion is interesting for three reasons: First, it allows some theo-
retical analysis, namely stating that if criteria like the Null Space Property or the
RIP (cf. [29]) (or any other condition that ensures ¢! minimization to recover the
sparsest solution) are met, the additional property of M = () is an exact recovery
criterion for the GISS algorithm. Second, it tells us if it might be worth (re-)running
an ¢! minimization algorithm on the problem. Third, popular state of the art ¢!
minimization algorithms such as the split Bregman (or Augmented Lagrangian)
method, the linearized Bregman method, or the alSS method, are typically ini-
tialized with a starting subgradient p = 0, but still converge to an #! minimizing
solution if one starts with an arbitrary subgradient p € range(A”). Since the lat-
ter is guaranteed by the GISS algorithm, one can use the GISS result as a possible
warm start for an /! minimization algorithm. The latter of course only makes sense
if there are only a few elements in M such that one can hope for p(t%) to be close
to the true ¢! subgradient.

In case of the GISS? method with p > 1 the situation is more complicated, since
the values of |p(t)| on the support are somewhere in between 1 and p, such that
even in the case where the signs of p(tX) are correct, we are not exactly determining
an ¢! minimizer anymore. However, interestingly, we determine a solution which is
close to a weighted ¢! norm, where the weights vary in between % and 1.

Theorem 3.4. Let u(t™) be the solution of Algorithm [ and let I denote the support
of u(t™). Let 0 be the solution to the weighted {* problem

(3.23) min J(u) such that Au = f,

with the weighted ¢* norm J(u) = wi|uz| and w; = [p;(t*)| ifi € I and w; = 1
if i ¢ I. We denote by M = {i € I | sign(u(t¥);) = —sign(p;(t¥))} the set of
indices i where the u(t®); is nonzero but has a different sign than p;(t). Then the
estimate

(3.24) J(@) > J(u(t®)) = 2 " [pi(*)|(|us ()| — sign(u; (¢°)) )
ieM
holds.
Proof. The proof is very similar to the proof of Theorem but will be given here

for the sake of completeness. The main change is that the subdifferential of the
weighted ¢! norm J can now be characterized as

- D = wisign(u;)  ifu; #0
(3.25) pe€d(u) & { 1B:] < wi else.
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Again, the GISS? algorithm yields |p;(¢¥)| < 1 for indices i ¢ I and we can define
an element p by

K o
(3:26) (o

It is easy to see from equation (B.25) that p € 0J(u(t¥)), and since p(t¥) €
range(AT), we find

(3.27) 0 < J(@) — J(u(t®)) — (5 — p(t*), & — u(tX)).

Again, we can examine the term (p — p(t¥), @ — u(¢®)) by dividing it into the sum

over the sets M and I N M€. Similarly to the proof of Theorem the sum over
I N M€ vanishes and we obtain

(3.28) (5= p(t"), 0 —u(t™)) =2 |pi(t")|(sign(u; (t°)) i — [uff]).
ieM
Inserting (328)) into B2T) yields the assertion. O

Again, the correctness of the signs allows to state the convergence to a weighted
¢! minimizing solution.

Conclusion 3.5. If {i | u(t®); # 0, sign(u(t¥);) = —sign(p;)(t%)} = 0, then the
GISSP algorithm has determined a J(-) minimizing solution, with J as defined in
Theorem B4l

Since the weights wi in the definition of J lie in [%, 1], it is clear that the closer p is
to one, the closer GISS? will be to the GISS! and also to the /! minimizing solution.
Also, notice that a weighted ¢! norm is the same as minimizing an unweighted ¢!
norm with a sensing matrix A in which not all columns have the same norm.

It is interesting to see that if the condition of Conclusion is met, there is even
a chance of the solution u(t) of the GISS? algorithm not only being a weighted
¢! minimizing solution, but also being an unweighted ¢! minimizing solution.

Proposition 3.6. In the notation of Theorem B4, define
_ 0 ifi ¢l
(3.29) €i —{ (w; — V)sign(u(t®)) i€l
Let the condition of Conclusion be met. If, additionally, there exists a v with

v; =0 fori €I and |(p(tx) —v);| < 1 fori & I, such that (e +v) € range(AT),
then u(t¥) is an (1 minimizing solution.

Proof. Note that based on the assumptions of the above proposition, we can write
(3.30) p(t5) =p1 +e+v

for an element p; which meets p; € 9||u(t*)|;: For i € I, v; = 0 and hence the
above simplifies to (p(tX)); = (p1); + €, which holds based on the definition of e.
For i ¢ I, ¢, = 0 and hence the above simplifies to (p(t*)); — v; = (p1);. Since
|(p(tr) — v);] <1 we can ensure that |(p1);| <1 for i ¢ I.

Since p(t¥) € range(AT) holds as the optimality condition of u(t) being a J(-)
minimizing solution, we can conclude that

(3.31) p1 = p(t™) — (e +v) € range(AT)

which, together with p; € 9||u(t*)||1, proves that u(tX) is also ¢! minimizing. O



FAST SPARSE RECONSTRUCTION 195

Since the vector € is known after the convergence of GISS?, a weaker version of
the above proposition is very easy to check:

Conclusion 3.7. If, in addition to the condition of Conclusion B3l the vector €
defined by [B3.29) meets € € range(AT), then the GISS? algorithm has determined
an 01 minimizing solution to Au = f.

Despite the greedy steps of leaving out the constrained minimization as well
as stretching the time steps by p, we obtain an algorithm for which a possible
verification of having converged to an #! minimizing solution is very simple.

4. NUMERICAL RESULTS

Let us look at the numerical performances of each of the methods. Note that
the main contribution of this paper is the introduction of a new greedy sparse
recovery method which approximates ¢! minimization closely and allows us to a
posteriori determine if the solution is also an ¢! minimizing solution. The following
numerical experiment serves as an illustration of how GISS? behaves, particularly
in comparison to the related methods alSS, OMP and WOMP. We additionally
include HTP and CoSaMP in our comparison to have results of two state of the art
greedy methods which immediately have a larger support. It is encouraging to see
that GISS? shows strong performances in comparison to the other greedy methods.

The numerical results section is organized as follows: First we describe one ex-
perimental setup with a particular type of sensing matrix and a particular way of
generating the data and analyze the results for this case in detail. We discuss differ-
ent ways of evaluating the results and comment on the differences of the methods
(such as HTP fixing the support size and trying to minimize the error opposed to
OMP increasing the support until the desired accuracy is reached). In a second
step, we vary the experimental setup, i.e., use different sensing matrices and differ-
ent ways to generate the data, to investigate to what extent the conclusions from
our first experiment seem to hold in general.

For our first experiments, we fix the number of rows of our sensing matrix A €
R™*™ to be m = 200. We vary the number of columns n as well as the sparsity
s of what we call source element u, which denotes the element we create our data
with, i.e., f = A4. A is generated as a random matrix with values drawn from
a Gaussian distribution. Afterwards the columns of A are normalized to have an
£2 norm of 1. The source element % is generated by randomly selecting indices for
the nonzero entries, which are then randomly drawn from {+1, —1}. Note that
this type of experimental setup has been used before, for instance, in [19]. For
each setting, i.e., for each combination of (n,s), we run our experiment 100 times
to be more independent of particular realizations of the random matrix and data
generation.

We investigate the behavior of the aISS method, OMP, WOMP with a parameter
a = 0.8, CoSaMP with the (true) sparsity of @ as the number of nonzero coefficients
s, HTP with v = 1 and also with the sparsity of @ as the number of nonzero
coefficients, GISS' and GISS'-2. The comparison is somehow unfair since CoSaMP
and HTP have the advantage of being given the true sparsity level we wish to
reconstruct. For the solution u of each algorithm for each choice of (n, s) we record

(1) the average runtime,

~ 2

. ~ uU—u

(2) the average relative error to the source element 4, I le“"’,
2
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(3) the average sparsity |ulo,
(4) the average number of iterations the algorithm needed.

To illustrate the algorithms behavior we can plot the results in a diagram with axes
for varying n and s (resulting in a phase diagram). The average sparsity |u|o of the
methods’ solution is shown in Figure [l

The HTP result reflects the sparsity of the source element 4 exactly since the
true sparsity level was an input parameter. Since this is also the case for the
CoSaMP algorithm, we omitted the CoSaMP plot in Figure[Il Note that although
we cannot guarantee that the source element u always was the sparsest solution,
no algorithm ever found a solution with lower ¢° norm. Comparing the algorithms,
we can see that the ¢! minimizing solution determined by the aISS algorithm on
average gave the sparsest recovery results. While GISS and GISS'? do not perform
quite as well as the alSS method, they clearly outperform OMP and WOMP. Since
a precise comparison might be difficult in Figure [Il let us additionally show the
isocontours at which the relative error in sparsity exceeds 10%, i.e., the isocontours
of W > 0.1. Plotting the isocontours of the alSS method, OMP, WOMP,
GISS, and GISS'? in one diagram allows an immediate comparison up to which
setting each method reconstructed gives sufficiently sparse solutions. The result is
shown in Figure

It now becomes obvious that the alSS method recovers the sparsest solutions,
followed by GISS and GISS'2. OMP and WOMP gave clearly weaker sparse re-
covery results. Among GISS and GISS!? we can see that the less greedy variant
was slightly more successful, although the difference is remarkably small. It is very
surprising that in our experiments WOMP actually succeeded more often in finding
sparse solutions than OMP.

Besides the sparsity, one could also consider looking at the relative error to the
source element, % Different from the ¢° comparison above, the relative error
will show if in the cases where the algorithms result is not sparse, certain algorithms
succeeded in reconstructing some peaks of 4 exactly. Figure [3] shows the relative
error in the same type of plot as above, this time including the CoSaMP result
as well as a contour plot, showing the isocontours at which % > 0.1 for each
method. Since this relative error can exceed values of 1 we pruned all values larger
than 1 to have all images on the same scale.

Clearly, the ¢! minimization was the best method in terms of the relative error,
too. We can see that the alSS method has very low relative errors even for set-
tings where the sparsity of the solution indicated that the method was unable to
reconstruct @. The greedy methods generally have a sharper transition between the
cases where the method succeeds and where it fails. We can see that GISS inherits
some /!-like behavior of a smooth relative error transition whereas the GISS*? ver-
sion shows an almost binary success-fail diagram. In the contour plot we can see
that the aISS approach has the highest success rate, very closely followed by GISS.
CoSaMP and GISS!2 show comparable reconstruction performances and seem to
do better than HTP. The OMP and WOMP methods behave very similarly and
seem to give clearly weaker reconstruction results.

Generally, GISS indeed seems to inherit some desirable properties from the ¢
minimizing alSS flow. Furthermore, it is encouraging to see that GISS outperforms
HTP and CoSaMP and GISS'? is comparable to CoSaMP and better than HTP.
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FIGURE 1. Comparison of the average ¢° norm of the solutions
of different sparse reconstruction algorithms. The sparsity of the
source element the data was created with as well as the number of
columns of the sensing matrix A are varied (x- and y-axis). The
sensing matrix A is a normalized random matrix. Each setting was
run 100 times and the average values are shown.

Although this is a particular test case (of a source element with values drawn
from {—1,+1}) it is remarkable that GISS and GISS!-? reached these performance
results despite HTP and CoSaMP being given the correct sparsity level as an input
parameter. Furthermore, CoSaMP and HTP do not converge to a sparse solution
of Au = f. Since their support size is fixed, they try to minimize the objective
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function ||Au — f]| for the given size of the support, while all of the other five
methods keep iterating until Au = f is solved exactly. To illustrate this problem,
Figure @ shows the errors || Au— f||? for the HTP and CoSaMP methods. Note that
all other methods always had a quadratic error of less than 1072, It is interesting
to see in Figure @ that for HTP the error is particularly high in the transition of the
settings where @ can or cannot be recovered exactly while for CoSaMP the error
seems to increase with the ill-posedness. Generally, HTP resulted in lower errors
than CoSaMP.

After having analyzed the quality of the algorithms in terms of their ability to
reconstruct sparse solutions, let us look at the computational expenses of the algo-
rithms. For all greedy algorithms the most expensive steps are the multiplication
with AT as well as a solution of a least-squares problem. For aISS the least-squares
problem has to be solved subject to additional sign constraints. The size of the
optimization problems is first very low dimensional and then increasing for alSS,
OMP, WOMP, GISS and GISS!2, while it is fixed at 3s for CoSaMP and at s for
HTP. Let us look at the number of iterations each algorithm needed to converge:
Figure [Bl shows the average number of iterations in each setting.

We can see that the price the alSS algorithm pays for obtaining the sparsest
reconstruction is a significantly higher number of iterations. Note that the alSS
method needed up to 350 iterations, while the number of iterations OMP or GISS is
bounded by the rank of the sensing matrix (i.e., by 200 in our case). Furthermore,
the alSS iterations can be more expensive since a low dimensional sign constraint
least squares problem is solved. The number of iterations OMP and GISS needs is
comparable and, since one index is allowed to enter the support at each iteration,
looks similar to the number of nonzero components shown in Figure[[l The number
of iterations needed by WOMP is significantly lower with at most 28 iterations.
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and the average values are shown.



200 MICHAEL MOELLER AND XTAOQUN ZHANG

CoSaMP

o
o
3
S
n )
] ©
=} S
S S
N @
2

®
3
3
>

Number of columns of A
3
S

Number of columns of A
3 0R
s 8

@
<3
S
@
S
S

@
1<}
S

©

3

3

@
3
3

5 15 25 35 45 55
1° norm of the source element 1° norm of the source element

5 15 25 35 45

FIGURE 4. Error [|Au — f||* for CoSaMP and HTP.

Even lower is the number of iterations of the GISS'? algorithm, which needed at
most 21 iterations. Note that while the most underdetermined cases were most
expensive for the alSS method, they become rather cheap (in terms of iterations)
for WOMP.

The number of iterations HTP needed is significantly different from all other
methods. While the HTP iteration image has a peak at 100 iterations, it most
often only shows 10-30 iterations. Interestingly, the most expensive cases for HTP
are reached for a moderate sparsity level 4. As pointed out in [16], the HTP
algorithm does not have to converge but can show periodic behavior, which is why
we stop HTP after at most 500 iterations. Note that a reduction of the step size in
HTP can guarantee convergence. However, we found in our numerical experiments
that larger step sizes work better, despite the risk of eventually periodic behavior.
We expect that HTP might have been caught in such a periodic behavior several
times for the settings where the corresponding iteration image has its peaks.

For the CoSaMP algorithm we also used a maximum number of 500 iterations
which, however, is reached for almost all difficult cases (of very underdetermined
systems and not very sparse source elements). The number of iterations CoSaMP
took in our test cases almost seems to reflect the behavior of successful or unsuc-
cessful reconstruction.

Although the comparison in terms of the number of iterations is interesting,
it does not exactly reflect the computational expenses of each method, since, for
example, GISS and GISS'?2 have to find the next time step while OMP and WOMP
just rely on the correlation to the residual. We found the runtime images, when
displayed in the same fashion as the number of iterations above, to look rather
noisy, which is why we focus on comparing the average run times over all settings.
The results are shown in a bar chart in Figure [6l

Interestingly, CoSaMP was the most expensive method on average (0.87 seconds)
which makes sense considering that it often took 500 iterations and always solves
the rather large 3s dimensional optimization problems. The aISS method was
slightly faster with about 0.76 seconds. Although the alISS algorithm needed fewer
iterations, some of the optimization problems were more computationally expensive
due to the sign constraint. Omitting the sign constraints (i.e., going from the alSS
to the GISS) we see that we get a speedup of more than a factor of two with an
average runtime of about 0.30 seconds. This, however, is an average over all test
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FIGURE 6. Overall average runtimes of the algorithms.

cases: The speedup is smaller for sparse source elements u, while it is much higher
for the complicated cases (particularly in those, where all methods fail).

We can see that OMP (0.23 seconds) has a small speed advantage over GISS,
mostly since GISS requires the computation of a next timestep t* while OMP just
needs to compute ATr*. A huge speedup is reached with the WOMP, HTP, and
GISS!2 methods, which for instance beat alISS by more than a factor of twenty.
WOMP and GISS!2 (both 0.034 seconds) have comparable speed while HTP (0.025
seconds) is even slightly faster. However, considering that HTP had the true spar-
sity as an input, does not always converge to a solution to Au = f and gave worse
recovery rates in our test case, we can conclude that GISS!? seems to be a very
good choice combining accuracy and speed.

Of course the above conclusion is only based on the case of a matrix A with en-
tries drawn from a Gaussian distribution, normalized matrix columns and a source
element with entries draw from {—1,+1}. As a next step we conducted four more
experiments with different ways of generating the sensing matrix A and different
ways of creating the source elements. The types of sensing matrices used for the
following tests are random orthonormal matrices and partial discrete cosine matri-
ces (motivated e.g. by [34]), as well as standard matrices with values drawn from a
Gaussian distribution (in our case with a nonzero mean) and sparse measurement
matrices (as for instance motivated by [27]). For the sake of brevity we only show
the contours at which the relative error of each method exceeds 10%, i.e., the con-
tour at which Hlﬂ;rﬁ”z > 0.1 (similar to the lower right plot in FigureB]). The setups
for the four experiments are the following:

e We choose A to be the matrix corresponding to a discrete Cosine transform
and select the nonzero entries of the source element 4 by drawing from a
uniform sampling of [—0.5,0.5]. The contours for the 10% relative error
threshold are shown in Figure [7

As we can see the results are very different from the results observed in
our previous experimental setup. Now OMP and WOMP yield the best
reconstruction quality based on the 10% relative error threshold. The ¢!
minimization results remain good and are still very well approximated by
the GISS algorithm. CoSaMP yields similar reconstruction quality and is
closely followed by the GISS!:%% relaxation. It is interesting to see that
the reconstruction accuracy suffers much more drastically when choosing
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FIGURE 7. Contours of all methods at which the relative error to
the true solution exceeds 10%. The sensing matrix A was chosen to
be a discrete Fourier matrix and the nonzero entries of the source
element @ are drawn from a uniform sampling of [—0.5,0.5].

an even larger p for the GISS” method: The GISS'? and HTP algorithms
show the worst reconstruction quality in this test.

For the next experiment the sensing matrix A is generated from a Gaussian
distribution with mean 0.5 and variance 1, and the nonzero entries of the
source element @ are again drawn from a uniform sampling of [—0.5,0.5].
Figure Rlillustrates the results of this test case.

We can see that this change of the experimental setup yet changes the
results again. While the HTP algorithm changes from being the worst
method to being the best method, the CoSaMP algorithm, previously yield-
ing good results, now turns out to show the worst reconstruction accuracy.
Constantly good reconstruction quality is achieved by the ¢! minimization
approach, which, once more, is well approximated by the GISS algorithm.
OMP yields results with an accuracy similar to #! minimization. We can
see that choosing more greedy methods, i.e. relaxing OMP to WOMP or
GISS to GISS? with p > 1, leads to a significant increase in reconstruction
error.

In our third experiment, we generate A as a random matrix with orthonor-
mal rows (more precisely as the matrix with orthonormal rows arising from
a QR-decomposition of a matrix with values drawn from a standard Gauss-
ian distribution). The nonzero entries of the source element @ are drawn
from a uniform sampling of [—1, 1]. The results in Figure [ indicate yet
a very different behavior of algorithms. From matrices with more than
700 columns the CoSaMP algorithm is by far the best choice, significantly
outperforming even the ¢! minimization approach. The latter shows the
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the true solution exceeds 10%. The entries in the sensing matrix A
are generated from a Gaussian distribution with mean 0.5 and the
nonzero entries of the source element @ are drawn from a uniform
sampling of [-0.5, 0.5].

second best reconstruction quality with the GISS algorithm replicating the
¢! minimization results almost exactly. Opposed to the previous two cases
one loses only very little when using GISS? with p = 1.05 and even with
p = 1.2. OMP and WOMP show much less favorable behavior with the
interesting observation that WOMP succeeds more often than OMP in this
test. Completely contrary to the previous test case, HTP yields by far the
worst reconstruction results and fails in all but the simplest cases.
In our last experiment we generated A to be sparse itself with only 10%
of the entries in A being nonzero and drawn from a Gaussian distribution,
and the nonzero entries of the source element @ to also be drawn from a
Gaussian distribution. Figure [I0 shows the corresponding contour plots.
In this last experiment we can see the typical behavior of ¢! minimiza-
tion being among the best methods, closely approximated by the GISS
algorithm. CoSaMP is very close to and in some cases even beating ¢! min-
imization. Being more greedy in the GISS algorithm in this case again costs
quite a lot of accuracy. OMP yields clearly worse results than CoSaMP,
¢! minimization and the GISS method, and for in this experiment we see
the expected behavior of WOMP succeeding less often. HTP did not meet
the threshold of an average relative error under 10% for any of the test

cases and hence has to be considered as the worst method for this kind of
experiment, too.
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In summary we can say that the type of sensing matrix and the type of nonzero
entries of the true sparse solution heavily influences the performance of the algo-
rithm. Particularly, HTP and CoSaMP can be among the best methods as well as
the worst methods depending on the particular setup. In all tests and in compari-
son to all methods, ¢! minimization stably gave very good results and was always
well approximated by the GISS algorithm, such that we can say that we proposed a
method suitable for stable fast sparse reconstruction. It often compared favorable
to OMP in our experiments. Being more greedy and using GISS? with p > 1 leads
to a significant increase in algorithm speed but can—depending on the experimen-
tal setup—Ilead to significantly worse recovery properties such that the parameter
p has to be chosen carefully to balance the trade-off between accuracy and speed.

5. CONCLUSIONS

We proposed a new method, GISS?, which is a greedy sparse recovery method
that approximates ¢! minimization more closely than OMP and WOMP. We ana-
lyzed the algorithms convergence, showed that it yields exact reconstruction for a
given ERC condition, and derived very simple criteria to check if the GISS? solu-
tion is an ¢! minimizing solution. Our numerical experiments indicate that GISS?
indeed inherits some desirable properties from the aISS flow and seems to outper-
form OMP in terms of the sparsity of the recovered solutions for p = 1. Choosing a
p > 1 can result in a significant speedup, leading to a method more than 20 times
faster than the alSS algorithm, but has to be chosen carefully to balance speed
and accuracy. We compared our method to OMP, WOMP, HTP, and CoSaMP in
five different numerical experiments and found that GISS always approximates the
results of /! minimization closely, which we found to be very good and, equally
importantly, stable in comparison to the results of other greedy algorithms. Gener-
ally, we expect GISS and GISS” to work particularly well in those instances where
¢! minimization works well.

In future research we will consider very high dimensional problems motivated
by sparsity related problems in image processing and compare the GISS? results
with classical /! minimization. Furthermore, we will try to extend this inverse scale
space related recovery idea to other types of problems. The key to the success of the
GISS method was to obtain a dual variable p which ‘almost’ is an ¢! subgradient
to the recovered solution. It will be worth investigating if this idea can be adapted
to other types of greedy recovery methods, maybe even for greedy approximations
of minimization problems involving regularizers different from the ¢! norm.
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