Finite differences of the logarithm of the partition function
HTML articles powered by AMS MathViewer
- by William Y. C. Chen, Larry X. W. Wang and Gary Y. B. Xie;
- Math. Comp. 85 (2016), 825-847
- DOI: https://doi.org/10.1090/mcom/2999
- Published electronically: July 22, 2015
- PDF | Request permission
Abstract:
Let $p(n)$ denote the partition function. DeSalvo and Pak proved that $\frac {p(n-1)}{p(n)}\left (1+\frac {1}{n}\right )> \frac {p(n)}{p(n+1)}$ for $n\geq 2$. Moreover, they conjectured that a sharper inequality $\frac {p(n-1)}{p(n)}\left ( 1+\frac {\pi }{\sqrt {24}n^{3/2}}\right ) > \frac {p(n)}{p(n+1)}$ holds for $n\geq 45$. In this paper, we prove the conjecture of Desalvo and Pak by giving an upper bound for $-\Delta ^{2} \log p(n-1)$, where $\Delta$ is the difference operator with respect to $n$. We also show that for given $r\geq 1$ and sufficiently large $n$, $(-1)^{r-1}\Delta ^{r} \log p(n)>0$. This is analogous to the positivity of finite differences of the partition function. It was conjectured by Good and proved by Gupta that for given $r\geq 1$, $\Delta ^{r} p(n)>0$ for sufficiently large $n$.References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York 1965.
- Gert Almkvist, Exact asymptotic formulas for the coefficients of nonmodular functions, J. Number Theory 38 (1991), no. 2, 145–160. MR 1111368, DOI 10.1016/0022-314X(91)90080-U
- Gert Almkvist, On the differences of the partition function, Acta Arith. 61 (1992), no. 2, 173–181. MR 1162124, DOI 10.4064/aa-61-2-173-181
- Árpád Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 575–599. MR 2720238, DOI 10.1017/S0013091508001016
- C. Bessenrodt and K. Ono, Maximal multiplicative properties of partitions, Ann. Combin. to appear.
- W. Y. C. Chen, Recent developments on log-concavity and $q$-log-concavity of combinatorial polynomials, DMTCS Proceeding, 22nd International Conference on Formal Power Series and Algebraic Combinatorics, 2010.
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math. 5 (1996), no. 4, 329–359. MR 1414285, DOI 10.1007/BF02124750
- S. DeSalvo and I. Pak, Log-concavity of the partition function, The Ramanujan Journal, to appear, DOI:10.1007/s11139-014-9599-y.
- I. J. Good, The difference of the partition function, Problem 6137, Amer. Math. Monthly 84 (1997), 141.
- Hansraj Gupta, Finite differences of the partition function, Math. Comp. 32 (1978), no. 144, 1241–1243. MR 480319, DOI 10.1090/S0025-5718-1978-0480319-5
- G. H. Hardy and S. Ramanujan, Asymptotic formulæin combinatory analysis [Proc. London Math. Soc. (2) 17 (1918), 75–115], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 276–309. MR 2280879
- Charles Knessl and Joseph B. Keller, Partition asymptotics from recursion equations, SIAM J. Appl. Math. 50 (1990), no. 2, 323–338. MR 1043589, DOI 10.1137/0150020
- Charles Knessl and Joseph B. Keller, Asymptotic behavior of high-order differences of the partition function, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 1033–1045. MR 1127047, DOI 10.1002/cpa.3160440814
- D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 43 (1938), no. 2, 271–295. MR 1501943, DOI 10.1090/S0002-9947-1938-1501943-5
- D. H. Lehmer, On the remainders and convergence of the series for the partition function, Trans. Amer. Math. Soc. 46 (1939), 362–373. MR 410, DOI 10.1090/S0002-9947-1939-0000410-9
- A. M. Odlyzko, Differences of the partition function, Acta Arith. 49 (1988), no. 3, 237–254. MR 932523, DOI 10.4064/aa-49-3-237-254
- S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), no. 2, 278–301. MR 1600537, DOI 10.1112/S0025579300012602
- H. Rademacher, A convergent series for the partition function $p(n)$, Proc. Nat. Acad. Sci. 23 (1937), 78–84.
- Hans Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman. MR 364103
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944. MR 10746
Bibliographic Information
- William Y. C. Chen
- Affiliation: Center for Applied Mathematics, Tianjin University, Tianjin 300072, People’s Republic of China
- MR Author ID: 232802
- Email: chenyc@tju.edu.cn
- Larry X. W. Wang
- Affiliation: Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 30071, People’s Republic of China
- MR Author ID: 845775
- Email: wsw82@nankai.edu.cn
- Gary Y. B. Xie
- Affiliation: Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 30071, People’s Republic of China
- Email: xieyibiao@mail.nankai.edu.cn
- Received by editor(s): July 1, 2014
- Received by editor(s) in revised form: September 23, 2014
- Published electronically: July 22, 2015
- Additional Notes: The authors wish to thank the referee for helpful comments. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education and the National Science Foundation of China.
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 825-847
- MSC (2010): Primary 05A20; Secondary 11B68
- DOI: https://doi.org/10.1090/mcom/2999
- MathSciNet review: 3434883