Estimates of $\psi ,\theta$ for large values of $x$ without the Riemann hypothesis
HTML articles powered by AMS MathViewer
- by Pierre Dusart;
- Math. Comp. 85 (2016), 875-888
- DOI: https://doi.org/10.1090/mcom/3005
- Published electronically: July 20, 2015
- PDF | Request permission
Abstract:
The enlargement of known zero-free regions has enabled us to find better effective estimates for classical number-theoretic functions linked to the distribution of prime numbers. In particular we draw the quintessence of the method of Rosser and Schoenfeld on the upper bounds for the usual Chebyshev prime and prime power counting functions to find an upper bound function directly linked to a zero-free region.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- M. Deléglise and Jean-Louis Nicolas, Maximal product of primes whose sum is bounded, Bull. Proc. of the Steklov Institute 17 (2013), 82–112.
- William John Ellison, Les nombres premiers, Publications de l’Institut de Mathématique de l’Université de Nancago, No. IX, Hermann, Paris, 1975 (French). En collaboration avec Michel Mendès France; Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1366. MR 417077
- Laura Faber and Habiba Kadiri, New bounds for $\psi (x)$, Math. Comp. 84 (2015), no. 293, 1339–1357. MR 3315511, DOI 10.1090/S0025-5718-2014-02886-X
- Kevin Ford, Florian Luca, and Pieter Moree, Values of the Euler $\phi$-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014), no. 287, 1447–1476. MR 3167466, DOI 10.1090/S0025-5718-2013-02749-4
- D. A. Goldston and Kevin S. McCurley, Sieving the positive integers by large primes, J. Number Theory 28 (1988), no. 1, 94–115. MR 925610, DOI 10.1016/0022-314X(88)90121-7
- X. Gourdon, The $10^{13}$ first zeros of the Riemann zeta function, and zeros computation at very large height, 2004.
- J. -P. Gram, Note sur les zéros de la fonction $\xi (s)$ de Riemann, Acta Math. 27 (1903), no. 1, 289–304 (French). MR 1554986, DOI 10.1007/BF02421310
- Habiba Kadiri, Une région explicite sans zéros pour la fonction $\zeta$ de Riemann, Acta Arith. 117 (2005), no. 4, 303–339 (French). MR 2140161, DOI 10.4064/aa117-4-1
- Jean-Louis Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith. 155 (2012), no. 3, 311–321. MR 2983456, DOI 10.4064/aa155-3-7
- David J. Platt, Computing $\pi (x)$ analytically, Math. Comp. 84 (2015), 1521–1535.
- Olivier Ramaré, Explicit estimates for the summatory function of $\Lambda (n)/n$ from the one of $\Lambda (n)$, Acta Arith. 159 (2013), no. 2, 113–122. MR 3062910, DOI 10.4064/aa159-2-2
- Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397–425. MR 1320898, DOI 10.1090/S0025-5718-96-00669-2
- Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 897531, DOI 10.1007/978-1-4757-1089-2
- Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337–360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- Terence Tao, Every odd number greater than $1$ is the sum of at most five primes, Math. Comp. 83 (2014), no. 286, 997–1038. MR 3143702, DOI 10.1090/S0025-5718-2013-02733-0
- Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280–292. MR 3111568, DOI 10.1016/j.jnt.2013.07.017
- S. Wedeniwski, Zetagrid. In Peer-to-Peer: Ökonomische, technische und juristische Perspektiven, pages 173–188. 2002.
Bibliographic Information
- Pierre Dusart
- Affiliation: XLIM - UMR CNRS $n^\circ$7252, Université de Limoges, France
- Address at time of publication: Département de Mathématiques, 123 avenue Albert THOMAS, 87060 Limoges Cedex, France
- Email: pierre.dusart@unilim.fr
- Received by editor(s): March 17, 2014
- Received by editor(s) in revised form: October 4, 2014
- Published electronically: July 20, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 875-888
- MSC (2010): Primary 11N56; Secondary 11A25, 11N05
- DOI: https://doi.org/10.1090/mcom/3005
- MathSciNet review: 3434886