Enumeration of MOLS of small order
HTML articles powered by AMS MathViewer
- by Judith Egan and Ian M. Wanless;
- Math. Comp. 85 (2016), 799-824
- DOI: https://doi.org/10.1090/mcom/3010
- Published electronically: July 14, 2015
Abstract:
We report the results of a computer investigation of sets of mutually orthogonal Latin squares (MOLS) of small order. For $n\leqslant 9$ we:
-
determine the number of orthogonal mates for each species of Latin square of order $n$;
-
calculate the proportion of Latin squares of order $n$ that have an orthogonal mate, and the expected number of mates when a square is chosen uniformly at random;
-
classify all sets of MOLS of order $n$ up to various different notions of equivalence.
We also provide a triple of Latin squares of order 10 that is the closest to being a set of MOLS so far found.
References
- R. C. Bose, On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares, Sankhyā 3 (1938), 323–338.
- J. W. Brown, A. S. Hedayat, and E. T. Parker, A pair of orthogonal Latin squares of order $10$ with four shared parallel transversals, J. Combin. Inform. System Sci. 18 (1993), no. 1-2, 113–115. MR 1317694
- Charles J. Colbourn and Jeffrey H. Dinitz (eds.), Handbook of combinatorial designs, 2nd ed., Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2246267
- Peter Danziger, Ian M. Wanless, and Bridget S. Webb, Monogamous Latin squares, J. Combin. Theory Ser. A 118 (2011), no. 3, 796–807. MR 2745425, DOI 10.1016/j.jcta.2010.11.011
- J. Dénes and A. D. Keedwell, Latin Squares and their Applications. Akadémiai Kiadó, Budapest, 1974.
- D. M. Donovan and M. J. Grannell, On the number of transversal designs, J. Combin. Theory Ser. A 120 (2013), no. 7, 1562–1574. MR 3092683, DOI 10.1016/j.jcta.2013.05.004
- David A. Drake, Maximal sets of Latin squares and partial transversals, J. Statist. Plann. Inference 1 (1977), no. 2, 143–149. MR 485434, DOI 10.1016/0378-3758(77)90019-2
- David A. Drake and Wendy Myrvold, The non-existence of maximal sets of four mutually orthogonal Latin squares of order 8, Des. Codes Cryptogr. 33 (2004), no. 1, 63–69. MR 2075813, DOI 10.1023/B:DESI.0000032607.03637.1c
- Judith Egan and Ian M. Wanless, Indivisible partitions of Latin squares, J. Statist. Plann. Inference 141 (2011), no. 1, 402–417. MR 2719505, DOI 10.1016/j.jspi.2010.06.020
- Erratum: Latin squares with restricted transversals [MR2868854], J. Combin. Des. 20 (2012), no. 7, 344–361. MR 2928154, DOI 10.1002/jcd.21316
- Anthony B. Evans, Latin squares without orthogonal mates, Des. Codes Cryptogr. 40 (2006), no. 1, 121–130. MR 2226287, DOI 10.1007/s10623-006-8153-3
- A. Hedayat, E. T. Parker, and W. T. Federer, The existence and construction of two families of designs for two successive experiments, Biometrika 57 (1970), 351–355. MR 269039, DOI 10.1093/biomet/57.2.351
- K. Hicks, G. L. Mullen, L. Storme and J. Vanpoucke, The number of different reduced complete sets of mutually orthogonal Latin squares corresponding to the Desarguesian projective planes, submitted for publication.
- Alexander Hulpke, Petteri Kaski, and Patric R. J. Östergård, The number of Latin squares of order 11, Math. Comp. 80 (2011), no. 274, 1197–1219. MR 2772119, DOI 10.1090/S0025-5718-2010-02420-2
- Dieter Jungnickel and Gerhard Grams, Maximal difference matrices of order $\leq 10$, Discrete Math. 58 (1986), no. 2, 199–203. MR 829078, DOI 10.1016/0012-365X(86)90163-9
- Petteri Kaski and Patric R. J. Östergård, Classification algorithms for codes and designs, Algorithms and Computation in Mathematics, vol. 15, Springer-Verlag, Berlin, 2006. With 1 DVD-ROM (Windows, Macintosh and UNIX). MR 2192256
- P. Kaski and O. Pottonen, http://koti.kapsi.fi/pottonen/libexact.html libexact software.
- J. I. Kokkala and P. R. J. Östergård, Classification of Graeco-Latin cubes, to appear J. Combin. Des., DOI: 10.1002/jcd.21400.
- Kenneth Kunen, The structure of conjugacy closed loops, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2889–2911. MR 1615991, DOI 10.1090/S0002-9947-00-02350-3
- Charles F. Laywine and Gary L. Mullen, Discrete mathematics using Latin squares, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1644242
- Barbara M. Maenhaut and Ian M. Wanless, Atomic Latin squares of order eleven, J. Combin. Des. 12 (2004), no. 1, 12–34. MR 2024246, DOI 10.1002/jcd.10064
- B. D. McKay, Latin squares, http://cs.anu.edu.au/~bdm/data/Latin.html.
- Brendan D. McKay, Jeanette C. McLeod, and Ian M. Wanless, The number of transversals in a Latin square, Des. Codes Cryptogr. 40 (2006), no. 3, 269–284. MR 2251320, DOI 10.1007/s10623-006-0012-8
- Brendan D. McKay, Alison Meynert, and Wendy Myrvold, Small Latin squares, quasigroups, and loops, J. Combin. Des. 15 (2007), no. 2, 98–119. MR 2291523, DOI 10.1002/jcd.20105
- Brendan D. McKay and Adolfo Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94–112. MR 3131381, DOI 10.1016/j.jsc.2013.09.003
- Brendan D. McKay and Ian M. Wanless, On the number of Latin squares, Ann. Comb. 9 (2005), no. 3, 335–344. MR 2176596, DOI 10.1007/s00026-005-0261-7
- Eliakim Hastings Moore, Tactical Memoranda I–III, Amer. J. Math. 18 (1896), no. 3, 264–290. MR 1505714, DOI 10.2307/2369797
- H. W. Norton, The 7 x 7 squares, Ann. Eugenics 9 (1939), 269–307. MR 1220
- Patric R. J. Östergård, Constructing combinatorial objects via cliques, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 57–82. MR 2187734, DOI 10.1017/CBO9780511734885.004
- P. J. Owens, Complete sets of pairwise orthogonal Latin squares and the corresponding projective planes, J. Combin. Theory Ser. A 59 (1992), no. 2, 240–252. MR 1149897, DOI 10.1016/0097-3165(92)90067-5
- P. J. Owens and D. A. Preece, Complete sets of pairwise orthogonal Latin squares of order $9$, J. Combin. Math. Combin. Comput. 18 (1995), 83–96. MR 1334636
- P. J. Owens and D. A. Preece, Aspects of complete sets of $9\times 9$ pairwise orthogonal Latin squares, Discrete Math. 167/168 (1997), 519–525. 15th British Combinatorial Conference (Stirling, 1995). MR 1446770, DOI 10.1016/S0012-365X(97)89938-4
- G. H. J. van Rees, Subsquares and transversals in Latin squares, Ars Combin. 29 (1990), no. B, 193–204. Twelfth British Combinatorial Conference (Norwich, 1989). MR 1412875
- I. M. Wanless, Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Electron. J. Combin. 6 (1999), Research Paper 9, 16. MR 1670298, DOI 10.37236/1441
- Ian M. Wanless, A generalisation of transversals for Latin squares, Electron. J. Combin. 9 (2002), no. 1, Research Paper 12, 15. MR 1912794, DOI 10.37236/1629
- I. M. Wanless, http://users.monash.edu.au/~iwanless/data/MOLS/, author’s homepage.
- Ian M. Wanless and Bridget S. Webb, The existence of Latin squares without orthogonal mates, Des. Codes Cryptogr. 40 (2006), no. 1, 131–135. MR 2226288, DOI 10.1007/s10623-006-8168-9
Bibliographic Information
- Judith Egan
- Affiliation: School of Mathematical Sciences, Monash University, VIC 3800 Australia
- MR Author ID: 300990
- Email: judith.egan@monash.edu
- Ian M. Wanless
- Affiliation: School of Mathematical Sciences, Monash University, VIC 3800 Australia
- Email: ian.wanless@monash.edu
- Received by editor(s): June 14, 2014
- Received by editor(s) in revised form: September 18, 2014
- Published electronically: July 14, 2015
- © Copyright 2015 by the authors
- Journal: Math. Comp. 85 (2016), 799-824
- MSC (2010): Primary 05B15; Secondary 62K99
- DOI: https://doi.org/10.1090/mcom/3010
- MathSciNet review: 3434882