On Pellet$’$s Theorem for a class of lacunary polynomials
HTML articles powered by AMS MathViewer
- by A. Melman;
- Math. Comp. 85 (2016), 707-716
- DOI: https://doi.org/10.1090/mcom/3011
- Published electronically: July 6, 2015
- PDF | Request permission
Abstract:
An important tool to separate zeros of a polynomial according to their moduli without actually computing them is Pellet’s theorem, which unfortunately places severe restrictions on the polynomial’s coefficients. We show that for a class of lacunary polynomials much better results can be obtained by rewriting a polynomial as a matrix polynomial.References
- Dario A. Bini, Vanni Noferini, and Meisam Sharify, Locating the eigenvalues of matrix polynomials, SIAM J. Matrix Anal. Appl. 34 (2013), no. 4, 1708–1727. MR 3144796, DOI 10.1137/120886741
- S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat., 6 (1931), 749–754.
- Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985. MR 832183, DOI 10.1017/CBO9780511810817
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. MR 225972
- A. Melman, Implementation of Pellet’s theorem, Numer. Algorithms 65 (2014), no. 2, 293–304. MR 3160754, DOI 10.1007/s11075-013-9705-z
- A. Melman, Generalization and variations of Pellet’s theorem for matrix polynomials, Linear Algebra Appl. 439 (2013), no. 5, 1550–1567. MR 3067822, DOI 10.1016/j.laa.2013.05.003
- M. A. Pellet, Sur un mode de séparation des racines des équations et la formule de Lagrange. Bull. Sci. Math., 5 (1881), 393–395.
- Françoise Tisseur and Karl Meerbergen, The quadratic eigenvalue problem, SIAM Rev. 43 (2001), no. 2, 235–286. MR 1861082, DOI 10.1137/S0036144500381988
- Richard S. Varga, Geršgorin and his circles, Springer Series in Computational Mathematics, vol. 36, Springer-Verlag, Berlin, 2004. MR 2093409, DOI 10.1007/978-3-642-17798-9
Bibliographic Information
- A. Melman
- Affiliation: Department of Applied Mathematics, School of Engineering, Santa Clara University, California 95053
- MR Author ID: 293268
- Email: amelman@scu.edu
- Received by editor(s): April 14, 2014
- Received by editor(s) in revised form: August 26, 2014
- Published electronically: July 6, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 707-716
- MSC (2010): Primary 12D10, 15A18, 30C15
- DOI: https://doi.org/10.1090/mcom/3011
- MathSciNet review: 3434877