A $p$-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties
HTML articles powered by AMS MathViewer
- by Jennifer S. Balakrishnan, J. Steffen Müller and William A. Stein;
- Math. Comp. 85 (2016), 983-1016
- DOI: https://doi.org/10.1090/mcom/3029
- Published electronically: August 12, 2015
- PDF | Request permission
Abstract:
Mazur, Tate, and Teitelbaum gave a $p$-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the $p$-adic $L$-function of a modular abelian variety and showing that it satisfies the appropriate interpolation property. This relies on a careful normalization of the $p$-adic $L$-function, which we achieve by a comparison of periods. Our generalization agrees with the conjecture of Mazur, Tate, and Teitelbaum in dimension 1 and the classical Birch and Swinnerton-Dyer conjecture formulated by Tate in rank 0. We describe the theoretical techniques used to formulate the conjecture and give numerical evidence supporting the conjecture in the case when the modular abelian variety is of dimension 2.References
- Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 617–636. MR 2251484, DOI 10.4310/PAMQ.2006.v2.n2.a11
- Amod Agashe and William Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455–484. With an appendix by J. Cremona and B. Mazur. MR 2085902, DOI 10.1090/S0025-5718-04-01644-8
- Jennifer S. Balakrishnan and Amnon Besser, Computing local $p$-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 11 (2012), 2405–2444. MR 2926986, DOI 10.1093/imrn/rnr111
- Jennifer S. Balakrishnan, Robert W. Bradshaw, and Kiran S. Kedlaya, Explicit Coleman integration for hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 16–31. MR 2721410, DOI 10.1007/978-3-642-14518-6_{6}
- Dominique Bernardi and Bernadette Perrin-Riou, Variante $p$-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 227–232 (French, with English and French summaries). MR 1233417
- Amnon Besser, The $p$-adic height pairings of Coleman-Gross and of Nekovář, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 13–25. MR 2076563, DOI 10.1090/crmp/036/02
- Siegfried Bosch and Qing Liu, Rational points of the group of components of a Néron model, Manuscripta Math. 98 (1999), no. 3, 275–293. MR 1717533, DOI 10.1007/s002290050140
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic $L$-functions and their derivatives, Ann. of Math. (2) 131 (1990), no. 1, 53–127. MR 1038358, DOI 10.2307/1971508
- John Coates, On $p$-adic $L$-functions, Astérisque 177-178 (1989), Exp. No. 701, 33–59. Séminaire Bourbaki, Vol. 1988/89. MR 1040567
- Robert F. Coleman, The universal vectorial bi-extension and $p$-adic heights, Invent. Math. 103 (1991), no. 3, 631–650. MR 1091621, DOI 10.1007/BF01239529
- Robert F. Coleman and Benedict H. Gross, $p$-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR 1097610, DOI 10.2969/aspm/01710073
- E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675–1697. MR 1836926, DOI 10.1090/S0025-5718-01-01320-5
- S. D. Galbraith, Equations for modular curves, Oxford Ph.D. thesis, 1996.
- Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarniţǎ, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp. 78 (2009), no. 268, 2397–2425. MR 2521294, DOI 10.1090/S0025-5718-09-02253-4
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- Paul Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. 107 (1985), no. 1, 23–38. MR 778087, DOI 10.2307/2374455
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- Qing Liu, Conducteur et discriminant minimal de courbes de genre $2$, Compositio Math. 94 (1994), no. 1, 51–79 (French). MR 1302311
- Qing Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577–4610 (French, with English summary). MR 1363944, DOI 10.1090/S0002-9947-96-01684-4
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Barry Mazur, William Stein, and John Tate, Computation of $p$-adic heights and log convergence, Doc. Math. Extra Vol. (2006), 577–614. MR 2290599
- B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195–237. MR 717595
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
- Robert L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, LMS J. Comput. Math. 14 (2011), 327–350. MR 2861691, DOI 10.1112/S1461157011000180
- Jan Steffen Müller, Computing canonical heights using arithmetic intersection theory, Math. Comp. 83 (2014), no. 285, 311–336. MR 3120591, DOI 10.1090/S0025-5718-2013-02719-6
- David Mumford, Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman; Reprint of the 1983 edition. MR 2352717, DOI 10.1007/978-0-8176-4578-6
- Yukihiko Namikawa and Kenji Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math. 9 (1973), 143–186. MR 369362, DOI 10.1007/BF01297652
- Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR 1263527, DOI 10.1007/s10107-005-0696-y
- Vivek Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513–1525. With an appendix by Amod Agashe. MR 2869136, DOI 10.1090/S0002-9939-2011-11014-1
- Bernadette Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) 17 (1984), 130 (French, with English summary). MR 799673
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399–456 (French, with English summary). MR 928018
- Robert Pollack, On the $p$-adic $L$-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523–558. MR 1983040, DOI 10.1215/S0012-7094-03-11835-9
- Robert Pollack and Glenn Stevens, Overconvergent modular symbols and $p$-adic $L$-functions, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 1–42 (English, with English and French summaries). MR 2760194, DOI 10.24033/asens.2139
- Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25–68. MR 1079839, DOI 10.1007/BF01239508
- Peter Schneider, $p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401–409. MR 679765, DOI 10.1007/BF01389362
- Peter Schneider, $p$-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329–374. MR 778132, DOI 10.1007/BF01388978
- Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523–544. MR 318162, DOI 10.2969/jmsj/02530523
- Goro Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211–221. MR 463119, DOI 10.1007/BF01391466
- Christopher Skinner and Eric Urban, The Iwasawa main conjectures for $\rm GL_2$, Invent. Math. 195 (2014), no. 1, 1–277. MR 3148103, DOI 10.1007/s00222-013-0448-1
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- W. A. Stein et al, Sage Mathematics Software (Version 6.2). The Sage Development Team, 2014. http://www.sagemath.org.
- William Stein and Christian Wuthrich, Algorithms for the arithmetic of elliptic curves using Iwasawa theory, Math. Comp. 82 (2013), no. 283, 1757–1792. MR 3042584, DOI 10.1090/S0025-5718-2012-02649-4
- Michael Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165–182. MR 1914251, DOI 10.4064/aa104-2-6
- John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 306, 415–440. MR 1610977
- V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), no. 2, 397–419. MR 1695203, DOI 10.1215/S0012-7094-99-09811-3
Bibliographic Information
- Jennifer S. Balakrishnan
- Affiliation: Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
- MR Author ID: 910890
- Email: balakrishnan@maths.ox.ac.uk
- J. Steffen Müller
- Affiliation: Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
- MR Author ID: 895560
- Email: jan.steffen.mueller@uni-oldenburg.de
- William A. Stein
- Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195
- MR Author ID: 679996
- Email: wstein@uw.edu
- Received by editor(s): September 19, 2014
- Published electronically: August 12, 2015
- Additional Notes: The first author was supported by NSF grant DMS-1103831.
The second author was supported by DFG grants STO 299/5-1 and KU 2359/2-1.
The third author was supported by NSF Grants DMS-1161226 and DMS-1147802. - © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 983-1016
- MSC (2010): Primary 11G40, 11G50, 11G10, 11G18
- DOI: https://doi.org/10.1090/mcom/3029
- MathSciNet review: 3434891