ON THE FIRST SIGN CHANGE OF $\theta(x) - x$

D. J. Platt and T. S. Trudgian

Abstract. Let $\theta(x) = \sum_{p \leq x} \log p$. We show that $\theta(x) < x$ for $2 < x < 1.39 \cdot 10^{17}$. We also show that there is an $x < \exp(727.951332668)$ for which $\theta(x) > x$.

1. Introduction

Let $\pi(x)$ denote the number of primes not exceeding x. The prime number theorem is the statement that

$$\pi(x) \sim \text{li}(x) = \int_2^x \frac{dt}{\log t}. \quad (1)$$

One often deals not with $\pi(x)$ but with the less obstinate Chebyshev functions

$\theta(x) = \sum_{p \leq x} \log p$ and $\psi(x) = \sum_{p^m \leq x} \log p$. The relation (1) is equivalent to

$$\psi(x) \sim x \quad \text{and} \quad \theta(x) \sim x. \quad (2)$$

Littlewood [10], showed that $\pi(x) - \text{li}(x)$ and $\psi(x) - x$ change sign infinitely often. Indeed, (see, e.g., [7, Thms. 34 and 35]) he showed more than this, namely that

$$\pi(x) - \text{li}(x) = \Omega_{\pm} \left(\frac{x^{\frac{1}{2}} \log \log \log x}{\log x} \right), \quad (2)$$

$$\psi(x) - x = \Omega_{\pm} (x^{\frac{1}{2}} \log \log \log x).$$

By [16 (3.36)] we have

$$\psi(x) - \theta(x) \leq 1.427 \sqrt{x} \quad (x > 1), \quad (3)$$

which, together with the second relation in (2), shows that $\theta(x) - x$ changes sign infinitely often.

Littlewood’s proof that $\pi(x) - \text{li}(x)$ changes sign infinitely often was ineffective: the proof did not furnish a number x_0 such that one could guarantee that $\pi(x) - \text{li}(x)$ changes sign for some $x \leq x_0$. Skewes [19] made Littlewood’s theorem effective; the best known result is that there must be a sign change less that $1.3972 \cdot 10^{316}$ [17]. On the other hand, Kotnik [8] showed that $\pi(x) < \text{li}(x)$ for all $2 < x \leq 10^{14}$.

We turn now to the question of sign changes in $\psi(x) - x$ and $\theta(x) - x$. There is nothing of much interest to be said about the first change of sign of $\psi(x) - x$: for $x \in [0, 100]$ there are 24 sign changes. The problem of determining values of C such that $\psi(x) - x$ changes sign in every interval $[x, Cx]$, for all sufficiently large x,
is much more interesting (as examined in (11)) but it is not something we consider here. As for the first change of sign in \(\theta(x) - x\), Schoenfeld [18, p. 360] showed that \(\theta(x) < x\) for all \(0 < x \leq 10^{11}\). This range appears to have been improved by Dusart, [5, p. 4] to \(0 < x \leq 8 \cdot 10^{11}\). We increase this in

Theorem 1. For \(0 < x \leq 1.39 \cdot 10^{17}\), \(\theta(x) < x\).

A result of Rosser [15] Lemma 4] is

Lemma 1 (Rosser). If \(\theta(x) < x\) for \(e^{2.4} \leq x \leq K\) for some \(K\), then \(\pi(x) < \text{li}(x)\) for \(e^{2.4} \leq x \leq K\).

This enables us to extend Kotnik’s result by proving

Corollary 1. \(\pi(x) < \text{li}(x)\) for all \(2 < x \leq 1.39 \cdot 10^{17}\).

Rosser and Schoenfeld [18, (3.38)], proved

\[
\psi(x) - \theta(x) - \theta(x^{\frac{1}{2}}) < 3x^{\frac{3}{5}}, \quad (x > 0).
\]

Table 3 in [6] gives us the bound \(|\psi(x) - x| \leq 7.5 \cdot 10^{-7}x\), which is valid for all \(x \geq e^{35} > 1.5 \cdot 10^{15}\). This, together with (4) and Theorem 1 enables us to make the following improvement to two results of Schoenfeld [18, (5.1*) and (5.3*)].

Corollary 2. For \(x > 0\),

\[
\theta(x) < (1 + 7.5 \cdot 10^{-7})x, \quad \psi(x) - \theta(x) < (1 + 7.5 \cdot 10^{-7})\sqrt{x} + 3x^{\frac{3}{5}}.
\]

We now turn to the question of sign changes in \(\theta(x) - x\). In [3,1] we prove

Theorem 2. There is some \(x \in \{\exp(727.951332642), \exp(727.951332668)\}\) for which \(\theta(x) > x\).

Throughout this article we make use of the following notation. For functions \(f(x)\) and \(g(x)\) we say that \(f(x) = \mathcal{O}^*(g(x))\) if \(|f(x)| \leq g(x)\) for the range of \(x\) under consideration.

2. Outline of Argument

The explicit formula for \(\psi(x)\) is [7, Thm. 29]

\[
\psi_0(x) = \frac{\psi(x + 0) + \psi(x - 0)}{2} = x - \sum_{\rho} \frac{x}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - \frac{1}{2} \log \left(1 - \frac{1}{x^{2}}\right).
\]

Since

\[
\psi(x) = \theta(x) + \theta(x^{\frac{1}{2}}) + \theta(x^{\frac{1}{3}}) + \ldots,
\]

we can manufacture an explicit formula for \(\theta(x)\). Using (4) and (5) we find that

\[
\theta(x) - x > -\theta \left(x^{\frac{1}{2}}\right) - \sum_{\rho} \frac{x}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - 3x^{\frac{3}{5}}.
\]

One can see why \(\theta(x) < x\) ‘should’ happen often. On the Riemann hypothesis, \(\rho = \frac{1}{2} + i\gamma\); since \(\gamma \geq 14\), one expects the dominant term on the right side of (6) to be \(-\theta \left(x^{\frac{1}{2}}\right)\).

We proceed in a manner similar to that in Lehman [9]. Let \(\alpha\) be a positive number. We shall make frequent use of the Gaussian kernel \(K(y) = \sqrt{\frac{x}{2\pi}} \exp(-\frac{1}{2} \alpha y^{2})\), which has the property that \(\int_{-\infty}^{\infty} K(y) \, dy = 1\).
Divide both sides of (6) by \(x^{3}\), make the substitution \(x \mapsto e^{u}\) and integrate against \(K(u - \omega)\). This gives

\[
\int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{\frac{u}{2}} \left\{ \theta(e^{u}) - e^{u} \right\} du > - \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)\theta \left(e^{\frac{u}{2}} \right) e^{-\frac{u}{2}} du
\]

\[
- \sum_{\rho} \frac{1}{\rho} \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{u(\rho - \frac{1}{2})} du - \left(\frac{\zeta'(0)}{\zeta(0)} \right) \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{-\frac{u}{2}} du
\]

\[
- 3 \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{-\frac{u}{2}} du = -I_1 - I_2 - I_3 - I_4,
\]

say. The interchange of summation and integration may be justified by noting that the sum over the zeroes of \(\zeta(s)\) in (6) converges boundedly in \(u \in [\omega - \eta, \omega + \eta]\). Noting that \(\zeta'(0)/\zeta(0) = \log 2\pi\), we proceed to estimate \(I_3\) and \(I_4\) trivially to show that

\[0 < I_3 < e^{-\frac{u}{2\pi}} \log 2\pi, \quad 0 < I_4 < 3e^{-\frac{u}{2\pi}}.\]

It will be shown in (8) that the contributions of \(I_3\) and \(I_4\) to (7) are negligible — this justifies our cavalier approach to their approximation.

We now turn to \(I_2\). Let \(A\) be the height to which the Riemann hypothesis has been verified, and let \(T \leq A\) be the height to which we can reasonably compute zeroes to a high degree of accuracy — we make this notion precise in (8). Write \(I_2 = S_1 + S_2\), where

\[
S_1 = \sum_{\gamma: |\gamma| \leq A} \frac{1}{\rho} \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{i\gamma u} du,
\]

\[
S_2 = \sum_{\gamma: |\gamma| > A} \frac{1}{\rho} \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{(\rho - \frac{1}{2})u} du.
\]

Our \(S_1\) is the same as that used by Lehman in [9, pp. 402-403]. Using (4.8) and (4.9) of [9] shows that

\[
S_1 = \sum_{|\gamma| \leq T} \frac{e^{i\gamma \omega}}{\rho} e^{-\gamma^2/2\alpha} + E_1,
\]

where

\[
|E_1| < 0.08\sqrt{\alpha e^{-\alpha \gamma^2/2}} + e^{-T^2/2\alpha} \left\{ \frac{\alpha}{\pi T^2} \log \frac{T}{2\pi} + 8 \log \frac{T}{T} + 4\alpha \right\}.
\]

Lehman considers

\[
f_\rho(s) = \rho s e^{-\rho s} \text{Li}(e^{\rho s})e^{-\alpha(s-w)^2/2},
\]

whence he writes his analogous version of \(S_2\) as a function of \(f_\rho(s)\) and then estimates this using integration by parts, Cauchy’s theorem, and the bound

\[
|f_\rho(s)| \leq 2 \exp(-\frac{1}{2}\alpha(s-w)^2).
\]

We consider the simpler function \(f_\rho(s) = \exp(-\frac{1}{2}\alpha(s-w)^2)\), which clearly satisfies (8). We may proceed as in §5 of [9] to deduce that

\[
|S_2| \leq A \log Ae^{-A^2/(2\alpha) + (w+\eta)/2} \left\{ 4\alpha^{-\frac{1}{2}} + 15\eta \right\},
\]

provided that

\[4A/w \leq \alpha \leq A^2, \quad 2A/\alpha \leq \eta < w/2.\]
All that remains is for us to estimate
\[I_1 = \int_{\omega - \eta}^{\omega + \eta} \theta \left(e^{\frac{u}{2}} \right) e^{-\frac{u}{2}} K(u - \omega) \, du. \]

Table 3 in [6] and (3) give us
\[|\theta(x) - x| \leq 1.5423 \cdot 10^{-9} x, \quad x \geq e^{200}, \]
which gives
\[I_1 < 1 + 1.5423 \cdot 10^{-9}, \quad (\omega - \eta) \geq 400. \]

Thus, we have

Theorem 3. Let \(A \) be the height to which the Riemann hypothesis has been verified, and let \(T \) satisfy \(0 < T \leq A \). Let \(\alpha, \eta \) and \(\omega \) be positive numbers for which \(\omega - \eta \geq 400 \) and for which
\[4A/\omega \leq \alpha \leq A^2, \quad 2A/\alpha \leq \eta \leq \omega/2. \]

Define \(K(y) = \sqrt{\alpha/(2\pi)} \exp(-y^2/2\alpha) \) and
\[I(\omega, \eta) = \int_{\omega - \eta}^{\omega + \eta} K(u - \omega) e^{-u^2/2} \left\{ \theta(e^u) - e^u \right\} \, du. \]

Then
\[I(\omega, \eta) \geq -1 - \sum_{|\gamma| \leq T} e^{i\gamma \omega} e^{-\gamma^2/(2\alpha)} - R_1 - R_2 - R_3 - R_4, \]
where
\[R_1 = 1.5423 \cdot 10^{-9}, \]
\[R_2 = 0.08\sqrt{\alpha} e^{-\alpha \eta^2/2} + e^{-T^2/2\alpha} \left\{ \frac{\alpha}{\pi T^2} \log \frac{T}{2\pi} + \frac{8\log T}{T} + \frac{4\alpha}{T^3} \right\}, \]
\[R_3 = e^{-(\omega - \eta)/2} \log 2\pi + 3e^{-(\omega - \eta)/6}, \]
\[R_4 = A(\log A) e^{-A^2/(2\alpha) + (w + \eta)/2} \left\{ 4\alpha^{-\frac{1}{2}} + 15\eta \right\}. \]

If one were to assume the Riemann hypothesis one could reduce the term \(R_4 \). This would give greater freedom in the choice of \(\alpha \); see [3.1.3].

Approximations different from (9) are available. For example, one could use Lemma 1 in [20] to obtain \(|\theta(x) - x| \leq 0.0045 x/(\log x)^2 \). One could also restrict the conditions in Theorem [3] to \(\omega - \eta \geq 600 \) using the slightly improved results from [6] that are applicable thereto. Neither of these improves significantly the bounds in Theorem [2].

We now need to search for values of \(\omega, \eta, A, T \) and \(\alpha \) for which the right side of (11) is positive.

3. Computations

3.1. Locating a crossover.

Consider the sum \(\Sigma_1 = \sum_{|\gamma| \leq T} e^{i\gamma \omega} \). We wish to find values of \(T \) and \(\omega \) for which this sum is small, that is, close to \(-1\); for such values the sum that appears in (11) should also be small. Bays and Hudson [2], when considering the problem of the first sign change of \(\pi(x) - \text{li}(x) \), identified some values of \(\omega \) for which \(\Sigma_1 \) is small. We investigated their values: \(\omega = 405, 412, 437, 599, 686 \) and 728.
For ω in this range, we have $R_1 = 1.5423 \cdot 10^{-9}$ so we endeavour to choose the parameters A, T, α and η to make the other error terms comparable.

3.1.1. Choosing A.
We relied on the rigorous verification of the Riemann hypothesis for $A = 3.0610046 \cdot 10^{10}$ by the second author [13]. This computation also produced a database of the zeroes below this height computed to an absolute accuracy of $\pm 2^{-102}$ [3].

3.1.2. Choosing T.
As already observed, we have sufficient zeroes to set $T = A \approx 3 \cdot 10^{10}$ but, since summing over roughly the 10^{11} zeroes below this height is too computationally expensive, we settled for $T = 6,970,346,000$ (about $2 \cdot 10^{10}$ zeroes). Even then, computing the sum using multiple precision interval arithmetic (see §3.1.4) takes about 40 hours on an 8 core platform.

3.1.3. Choosing the other parameters.
To get the finest granularity on our search (i.e. to be able to detect narrow regions where $\theta(x) > x$) we aim at setting η as small as possible. This in turn means setting α (which controls the width of the Gaussian) as large as possible. However, to ensure that R_4 is manageable, we need $A^2/(2\alpha) > \omega/2$ or $\alpha < A^2/\omega$. A little experimentation led us to

$$\alpha = 1, 153, 308, 722, 614, 227, 968, \quad \eta = \frac{933831}{2^{44}},$$

both of which are exactly representable in IEEE double precision.

3.1.4. Summing over the zeroes.
Since

$$\frac{\exp(i\gamma \omega)}{\frac{1}{2} + i\gamma} + \frac{\exp(-i\gamma \omega)}{\frac{1}{2} - i\gamma} = \frac{\cos(\gamma \omega) + 2\gamma \sin(\gamma \omega)}{\frac{1}{4} + \gamma^2},$$

the dominant term in Σ_1 is roughly $2 \sin(\gamma \omega)/\gamma$. Though one might expect a relative accuracy of 2^{-53} when computing this in double precision, the effect of reducing $\gamma \omega \mod 2\pi$ degrades this to something like 2^{-17} when $\gamma = 10^9$ and $\omega = 400$. We are therefore forced into using multiple precision, even though that entails a performance penalty perhaps as high as a factor of 100. To avoid the need to consider rounding and truncation errors at all, we use the MPFI [14] multiple precision interval arithmetic package for all floating point computations. Making the change from scalar to interval arithmetic probably costs us another factor of 4 in terms of performance.

3.1.5. Results.
We initially searched the regions around $\omega = 405, 412, 437, 599, 686$ and 728 using only those zeroes $\frac{1}{2} + i\gamma$ with $0 < \gamma < T = 5,000$. Although these results were not rigorous, it was hoped that a sum approaching -1 would indicate a potential crossover worth investigating with full rigour. As an example, Figure 1 shows the results for a region near $\omega = 437.7825$. This is some way from dipping below the -1 level and indeed a rigorous computation using the full set of zeroes and with $\omega = 437.78249$ fails to get over the line. The same pattern repeats for ω near 405, 412, 599 and 686.

In contrast, we expected the region near 728 to yield a point where $\theta(x) > x$. The lowest published interval containing an x such that $\pi(x) > \text{li}(x)$ is

$$x \in [\exp(727.951335231), \exp(727.951335621)]$$
Figure 1. Plot of \(\sum_{|\gamma| \leq 5000} \frac{e^{i\omega \gamma}}{\rho} \) for \(\omega \in [437.78, 437.785] \).

in [17]. Since the error terms for \(\theta(x) - x \) are tighter than those for \(\pi(x) - \text{li}(x) \) this necessarily means that the same \(x \) will satisfy \(\theta(x) > x \). In fact, we can do better. Using \(\omega = 727.951332655 \) we get

\[
\sum_{|\gamma| \leq T} \frac{\exp(i \gamma \omega)}{\rho} \exp \left(-\frac{\gamma^2}{2\alpha} \right) \in [-1.0013360278, -1.0013360277].
\]

We also have \(R_1 + R_2 + R_3 + R_4 < 1.7 \cdot 10^{-9} \), so that

\[
(12)\quad \int_{\omega - \eta}^{\omega + \eta} K(u - \omega)e^{-u/2} \{ \theta(e^u) - e^u \} \, du > 0.0013360261.
\]

3.1.6. Sharpening the region. Using the same argument as [17, §9], we can analyse the tails of the integral (10) and sharpen the region considerably. Consider, for \(\eta_0 \in (0, \eta] \),

\[
T_1 = \int_{\omega + \eta_0}^{\omega + \eta} K(u - \omega)e^{-u/2} \{ \theta(e^u) - e^u \} \, du
\]

and

\[
T_2 = \int_{\omega - \eta}^{\omega - \eta_0} K(u - \omega)e^{-u/2} \{ \theta(e^u) - e^u \} \, du.
\]

Another appeal to Table 3 in [6], and (3), gives us

\[
|\theta(x) - x| \leq 1.3082 \cdot 10^{-9}x, \quad x \geq e^{700}.
\]

Thus for \(\omega - \eta > 700 \) we have

\[
|T_1| + |T_2| \leq 1.3082 \cdot 10^{-9}(\eta - \eta_0)K(\eta_0) \left[e^{\frac{\omega + \eta_0}{2}} + e^{\frac{\omega - \eta_0}{2}} \right].
\]
Applying (13) to (12), we find we can take \(\eta_0 = \eta / 4.2867 \) so that
\[
\int_{\omega - \eta_0}^{\omega + \eta_0} K(u - \omega) e^{-u/2} \{ \theta(e^u) - e^u \} \, du > 2.75 \cdot 10^{-6},
\]
which proves Theorem 2. Therefore, there is at least one \(u \in (\omega - \eta_0, \omega + \eta_0) \) with
\[
\theta(e^u) - e^u > 2.75 \cdot 10^{-6} e^{u/2} > 10^{152}.
\]

Since \(\theta(x) \) is nondecreasing this proves

Corollary 3. There are more than \(10^{152} \) successive integers \(x \) satisfying
\[
x \in [\exp(727.951332642), \exp(727.951332668)],
\]
for which \(\theta(x) > x \).

3.2. A lower bound

Having established an upper bound for the first \(x \) for which \(\theta(x) \) exceeds \(x \), we now turn to a lower bound. A simple method would be to sieve all the primes \(p \) less than some bound \(B \), sum \(\log p \) starting at \(p = 2 \), and compare the running total each time to \(p \). We set \(B = 1.39 \cdot 10^{17} \) since this was required by the second author for another result in [4]. By the prime number theorem we would expect to find about \(3.5 \cdot 10^{15} \) primes below this bound. Since this is far too many for a single thread computation we must look for some way of computing in parallel.

3.2.1. A parallel algorithm

We divide the range \([0, B]\) into contiguous segments. For each segment \(S_j = [x_j, y_j] \) we set \(T = \Delta = \Delta_{\text{min}} = 0 \). We look at each prime \(p_i \) in this segment, compute \(l_i = \log p_i \), and add it to \(T \). We set \(\Delta = \Delta + l_i - p_i + p_{i-1} \) and \(\Delta_{\text{min}} = \min(\Delta_{\text{min}}, \Delta) \). Thus, at any \(p \), \(\Delta_{\text{min}} \) is the maximum amount by which \(\theta(p) \) has caught up with or gone further ahead of \(p \) within this segment. After processing all the primes within a segment, we output \(T \) and \(\Delta_{\text{min}} \).

Now, for each segment \(S_j = [x, y] \) the value of \(\theta(x) \) is simply the sum of \(T_k \) with \(k < j \) and \(\theta(y) = \theta(x) + T_j \). Furthermore, if \(\theta(x) < x \) and \(\theta(x) + \Delta_{\text{min}} > 0 \), then \(\theta(w) < w \) for all \(w \in [x, y] \).

3.2.2. Results

We implemented this algorithm in C++ using Kim Walisch’s “primesieve” [21] to enumerate the primes efficiently, and the second author’s double precision interval arithmetic package to manage rounding errors.

We split \(B \) into 10,000 segments of width \(10^{13} \) followed by 390 segments of width \(10^{14} \). This pattern was chosen so that we could use Oliveira e Silva’s tables of \(\pi(x) \) [12] as an independent check of the sieving process.

We used the 16 core nodes of the University of Bristol Bluecrystal Phase III cluster [1] and we were able to utilise each core fully. In total we used about 78,000 node hours. This established Theorem 1.

We plot \((x - \theta(x))/\sqrt{x} \) measured at the end of each segment in Figure 2. As one would expect, this appears to be a random walk around the line 1.
Figure 2. Plot of $\frac{x-\theta(x)}{\sqrt{x}}$.

References

ON THE FIRST SIGN CHANGE OF $\theta(x) - x$

Heilbronn Institute for Mathematical Research University of Bristol, Bristol, United Kingdom

E-mail address: dave.platt@bris.ac.uk

Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia

E-mail address: timothy.trudgian@anu.edu.au