Zeros of Dedekind zeta functions under GRH
HTML articles powered by AMS MathViewer
- by Loïc Grenié and Giuseppe Molteni;
- Math. Comp. 85 (2016), 1503-1522
- DOI: https://doi.org/10.1090/mcom/3024
- Published electronically: October 9, 2015
- PDF | Request permission
Abstract:
Assuming GRH, we prove an explicit upper bound for the number of zeros of a Dedekind zeta function having imaginary part in $[T-a,T+a]$. We also prove a bound for the multiplicity of the zeros.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- J. W. Bober, Database of zeros of the zeta function, http://www.lmfdb.org/zeros/zeta/, 2014.
- Emanuel Carneiro, Vorrapan Chandee, and Micah B. Milinovich, Bounding $S(t)$ and $S_1(t)$ on the Riemann hypothesis, Math. Ann. 356 (2013), no. 3, 939–968. MR 3063902, DOI 10.1007/s00208-012-0876-z
- X. Gourdon, The $10^{13}$ first zeros of the Riemann zeta function, and zeros computation at very large height, 2004, http://numbers.computation.free.fr/Constants/Miscellaneous/ zetazeros1e13-1e24.pdf
- L. Grenié and G. Molteni, Explicit smoothed prime ideals theorems under GRH, to appear in Math. Comp., 2015, DOI: http://dx.doi.org/10.1090/mcom3039.
- L. Grenié and G. Molteni, Explicit versions of the prime ideal theorem for Dedekind zeta functions under GRH, to appear in Math. Comp., 2015, DOI: http://dx.doi.org/10.1090/mcom3031.
- Serge Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337–345. MR 294268, DOI 10.1007/BF01403312
- J. E. Littlewood, On the zeros of the Riemann Zeta-function, Cambr. Phil. Soc. Proc. 22 (1924), 295–318.
- Raghavan Narasimhan and Yves Nievergelt, Complex analysis in one variable, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1803086, DOI 10.1007/978-1-4612-0175-5
- Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI 10.1007/BF01405166
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- T. S. Trudgian, An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions, Math. Comp. 84 (2015), 1439–1450. DOI: http://dx.doi.org/10.1090/S0025-5718-2014-02898-6, 2014.
- Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280–292. MR 3111568, DOI 10.1016/j.jnt.2013.07.017
Bibliographic Information
- Loïc Grenié
- Affiliation: Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di Bergamo, viale Marconi 5, 24044 Dalmine (BG) Italy
- MR Author ID: 712882
- Email: loic.grenie@gmail.com
- Giuseppe Molteni
- Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
- MR Author ID: 357391
- Email: giuseppe.molteni1@unimi.it
- Received by editor(s): July 4, 2014
- Received by editor(s) in revised form: October 18, 2014, and November 7, 2014
- Published electronically: October 9, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 1503-1522
- MSC (2010): Primary 11R42
- DOI: https://doi.org/10.1090/mcom/3024
- MathSciNet review: 3454373