A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations
HTML articles powered by AMS MathViewer
- by Christophe Berthon and Christophe Chalons;
- Math. Comp. 85 (2016), 1281-1307
- DOI: https://doi.org/10.1090/mcom3045
- Published electronically: September 15, 2015
- PDF | Request permission
Abstract:
This work is devoted to the derivation of a fully well-balanced numerical scheme for the well-known shallow-water model. During the last two decades, several well-balanced strategies have been introduced with special attention to the exact capture of the stationary states associated with the so-called lake at rest. By fully well-balanced, we mean here that the proposed Godunov-type method is also able to preserve stationary states with non zero velocity. The numerical procedure is shown to preserve the positiveness of the water height and satisfies a discrete entropy inequality.References
- Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Rupert Klein, and Benoît Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004), no. 6, 2050–2065. MR 2086830, DOI 10.1137/S1064827503431090
- Alfredo Bermudez and Ma. Elena Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids 23 (1994), no. 8, 1049–1071. MR 1314237, DOI 10.1016/0045-7930(94)90004-3
- Christophe Berthon, Numerical approximations of the 10-moment Gaussian closure, Math. Comp. 75 (2006), no. 256, 1809–1831. MR 2240636, DOI 10.1090/S0025-5718-06-01860-6
- Christophe Berthon, Robustness of MUSCL schemes for 2D unstructured meshes, J. Comput. Phys. 218 (2006), no. 2, 495–509. MR 2269374, DOI 10.1016/j.jcp.2006.02.028
- Christophe Berthon and Françoise Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-water equations, J. Comput. Phys. 231 (2012), no. 15, 4993–5015. MR 2929930, DOI 10.1016/j.jcp.2012.02.031
- François Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. MR 2128209, DOI 10.1007/b93802
- François Bouchut, Christian Klingenberg, and Knut Waagan, A multiwave approximate Riemann solver for ideal MHD based on relaxation. I. Theoretical framework, Numer. Math. 108 (2007), no. 1, 7–42. MR 2350183, DOI 10.1007/s00211-007-0108-8
- François Bouchut, Christian Klingenberg, and Knut Waagan, A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves, Numer. Math. 115 (2010), no. 4, 647–679. MR 2658158, DOI 10.1007/s00211-010-0289-4
- François Bouchut and Tomás Morales de Luna, A subsonic-well-balanced reconstruction scheme for shallow water flows, SIAM J. Numer. Anal. 48 (2010), no. 5, 1733–1758. MR 2733096, DOI 10.1137/090758416
- Steve Bryson, Yekaterina Epshteyn, Alexander Kurganov, and Guergana Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 3, 423–446. MR 2804645, DOI 10.1051/m2an/2010060
- Thierry Buffard, Thierry Gallouet, and Jean-Marc Hérard, Un schéma simple pour les équations de Saint-Venant, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 3, 385–390 (French, with English and French summaries). MR 1648505, DOI 10.1016/S0764-4442(97)83000-5
- Manuel Castro, José M. Gallardo, Juan A. López-García, and Carlos Parés, Well-balanced high order extensions of Godunov’s method for semilinear balance laws, SIAM J. Numer. Anal. 46 (2008), no. 2, 1012–1039. MR 2383221, DOI 10.1137/060674879
- Manuel J. Castro, Alberto Pardo Milanés, and Carlos Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Math. Models Methods Appl. Sci. 17 (2007), no. 12, 2055–2113. MR 2371563, DOI 10.1142/S021820250700256X
- Christophe Chalons, Frédéric Coquel, Edwige Godlewski, Pierre-Arnaud Raviart, and Nicolas Seguin, Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction, Math. Models Methods Appl. Sci. 20 (2010), no. 11, 2109–2166. MR 2740716, DOI 10.1142/S021820251000488X
- Christophe Chalons and Jean-François Coulombel, Relaxation approximation of the Euler equations, J. Math. Anal. Appl. 348 (2008), no. 2, 872–893. MR 2446042, DOI 10.1016/j.jmaa.2008.07.034
- Ashwin Chinnayya, Alain-Yves LeRoux, and Nicolas Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon, Int. J. Finite Vol. 1 (2004), no. 1, 33. MR 2465450
- Gérard Gallice, Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source, C. R. Math. Acad. Sci. Paris 334 (2002), no. 8, 713–716 (French, with English and French summaries). MR 1903376, DOI 10.1016/S1631-073X(02)02307-5
- Gérard Gallice, Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates, Numer. Math. 94 (2003), no. 4, 673–713. MR 1990589, DOI 10.1007/s00211-002-0430-0
- Thierry Gallouët, Jean-Marc Hérard, and Nicolas Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Comput. & Fluids 32 (2003), no. 4, 479–513. MR 1966639, DOI 10.1016/S0045-7930(02)00011-7
- Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987, DOI 10.1007/978-1-4612-0713-9
- L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl. 39 (2000), no. 9-10, 135–159. MR 1753567, DOI 10.1016/S0898-1221(00)00093-6
- N. Goutal and F. Maurel, A finite volume solver for 1D shallow-water equations applied to an actual river, Int. J. Numer. Meth. Fluids 38 (2002), 1–19.
- N. Goutaland F. Maurel, Proceedings of the 2nd workshop on dam-break wave simulation, Technical report, EDF-DER, HE-43/97/016/B (1997).
- J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 1–16. MR 1377240, DOI 10.1137/0733001
- Amiram Harten, Peter D. Lax, and Bram van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35–61. MR 693713, DOI 10.1137/1025002
- Shi Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, M2AN Math. Model. Numer. Anal. 35 (2001), no. 4, 631–645. MR 1862872, DOI 10.1051/m2an:2001130
- P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 93653, DOI 10.1002/cpa.3160100406
- Philippe G. LeFloch and Mai Duc Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime, J. Comput. Phys. 230 (2011), no. 20, 7631–7660. MR 2823568, DOI 10.1016/j.jcp.2011.06.017
- Philippe G. LeFloch and Mai Duc Thanh, The Riemann problem for the shallow water equations with discontinuous topography, Commun. Math. Sci. 5 (2007), no. 4, 865–885. MR 2375051
- Q. Liang and F. Marche, Numerical resolution of well-balanced shallow water equations with complex source terms, Advances in Water Resources 32 (6) (2009), 873–884.
- T. Morales de Luna, M. J. Castro Díaz, C. Parés Madroñal, and E. D. Fernández Nieto, On a shallow water model for the simulation of turbidity currents, Commun. Comput. Phys. 6 (2009), no. 4, 848–882. MR 2672326, DOI 10.4208/cicp.2009.v6.p848
- Sebastian Noelle, Normann Pankratz, Gabriella Puppo, and Jostein R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys. 213 (2006), no. 2, 474–499. MR 2207248, DOI 10.1016/j.jcp.2005.08.019
- Sebastian Noelle, Yulong Xing, and Chi-Wang Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys. 226 (2007), no. 1, 29–58. MR 2356351, DOI 10.1016/j.jcp.2007.03.031
- Carlos Parés and Manuel Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems, M2AN Math. Model. Numer. Anal. 38 (2004), no. 5, 821–852. MR 2104431, DOI 10.1051/m2an:2004041
- Pierre-Arnaud Raviart and Lionel Sainsaulieu, A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem, Math. Models Methods Appl. Sci. 5 (1995), no. 3, 297–333. MR 1330136, DOI 10.1142/S021820259500019X
- Benoît Perthame and Youchun Qiu, A variant of Van Leer’s method for multidimensional systems of conservation laws, J. Comput. Phys. 112 (1994), no. 2, 370–381. MR 1277283, DOI 10.1006/jcph.1994.1107
- V. V. Rusanov, The calculation of the interaction of non-stationary shock waves with barriers, Ž. Vyčisl. Mat i Mat. Fiz. 1 (1961), 267–279 (Russian). MR 147083
- G. Russo and A. Khe, High order well-balanced schemes based on numerical reconstruction of the equilibrium variables, Proceedings “WASCOM 2009” 15th Conference on Waves and Stability in Continuous Media, World Sci. Publ., Hackensack, NJ, 2010, pp. 230–241. MR 2762021, DOI 10.1142/9789814317429_{0}032
- Giovanni Russo and Alexander Khe, High order well balanced schemes for systems of balance laws, Hyperbolic problems: theory, numerics and applications, Proc. Sympos. Appl. Math., vol. 67, Amer. Math. Soc., Providence, RI, 2009, pp. 919–928. MR 2605287, DOI 10.1090/psapm/067.2/2605287
- Yulong Xing, Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. part A, J. Comput. Phys. 257 (2014), no. part A, 536–553. MR 3129548, DOI 10.1016/j.jcp.2013.10.010
- Yulong Xing and Chi-Wang Shu, High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, J. Comput. Phys. 214 (2006), no. 2, 567–598. MR 2216604, DOI 10.1016/j.jcp.2005.10.005
- Yulong Xing, Chi-Wang Shu, and Sebastian Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations, J. Sci. Comput. 48 (2011), no. 1-3, 339–349. MR 2811708, DOI 10.1007/s10915-010-9377-y
- Y. Xing, X. Zhang, and C.-W. Shu, Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Resour. 33 (2010), 1476-1493.
Bibliographic Information
- Christophe Berthon
- Affiliation: Université de Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France
- MR Author ID: 654277
- Christophe Chalons
- Affiliation: Laboratoire de Mathématiques de Versailles, UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, UFR des Sciences, bâtiment Fermat, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
- Received by editor(s): May 15, 2014
- Received by editor(s) in revised form: December 3, 2014
- Published electronically: September 15, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 1281-1307
- MSC (2010): Primary 65M60, 65M12, 76M12, 35L65
- DOI: https://doi.org/10.1090/mcom3045
- MathSciNet review: 3454365