Implicit QR for companion-like pencils
HTML articles powered by AMS MathViewer
- by P. Boito, Y. Eidelman and L. Gemignani;
- Math. Comp. 85 (2016), 1753-1774
- DOI: https://doi.org/10.1090/mcom/3020
- Published electronically: August 31, 2015
- PDF | Request permission
Abstract:
A fast implicit QR algorithm for eigenvalue computation of low rank corrections of unitary matrices is adjusted to work with matrix pencils arising from polynomial zero-finding problems. The modified QZ algorithm computes the generalized eigenvalues of certain $N\times N$ rank structured matrix pencils using $O(N^2)$ flops and $O(N)$ memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.References
- V. I. Arnol′d, On matrices depending on parameters, Uspehi Mat. Nauk 26 (1971), no. 2(158), 101–114 (Russian). MR 301242
- David Day and Louis Romero, Roots of polynomials expressed in terms of orthogonal polynomials, SIAM J. Numer. Anal. 43 (2005), no. 5, 1969–1987. MR 2192327, DOI 10.1137/040609847
- C. de Boor, An empty exercise, in ACM SIGNUM Newsletter, vol. 25 (4), Oct. 1990, pp. 2–6.
- Alan Edelman, Erik Elmroth, and Bo Kågström, A geometric approach to perturbation theory of matrices and matrix pencils. I. Versal deformations, SIAM J. Matrix Anal. Appl. 18 (1997), no. 3, 653–692. MR 1453545, DOI 10.1137/S0895479895284634
- Alan Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Math. Comp. 64 (1995), no. 210, 763–776. MR 1262279, DOI 10.1090/S0025-5718-1995-1262279-2
- Yuli Eidelman, Israel Gohberg, and Luca Gemignani, On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms, Linear Algebra Appl. 420 (2007), no. 1, 86–101. MR 2277631, DOI 10.1016/j.laa.2006.06.028
- Yuli Eidelman, Luca Gemignani, and Israel Gohberg, Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations, Numer. Algorithms 47 (2008), no. 3, 253–273. MR 2385737, DOI 10.1007/s11075-008-9172-0
- Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations Operator Theory 34 (1999), no. 3, 293–324. MR 1689391, DOI 10.1007/BF01300581
- Yuli Eidelman, Israel Gohberg, and Iulian Haimovici, Separable type representations of matrices and fast algorithms. Vol. 1, Operator Theory: Advances and Applications, vol. 234, Birkhäuser/Springer, Basel, 2014. Basics. Completion problems. Multiplication and inversion algorithms. MR 3137083
- Yuli Eidelman, Israel Gohberg, and Iulian Haimovici, Separable type representations of matrices and fast algorithms. Vol. 2, Operator Theory: Advances and Applications, vol. 235, Birkhäuser/Springer Basel AG, Basel, 2014. Eigenvalue method. MR 3136431
- Miroslav Fiedler and Thomas L. Markham, Completing a matrix when certain entries of its inverse are specified, Linear Algebra Appl. 74 (1986), 225–237. MR 822149, DOI 10.1016/0024-3795(86)90125-4
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. MR 3024913
- Gudbjörn F. Jónsson and Stephen Vavasis, Solving polynomials with small leading coefficients, SIAM J. Matrix Anal. Appl. 26 (2004/05), no. 2, 400–414. MR 2124155, DOI 10.1137/S0895479899365720
- D. Lemonnier, P. Van Dooren, Optimal Scaling of Companion Pencils for the QZ-Algorithm, SIAM Conference on Applied Linear Algebra, Williamsburg, VA. 2003.
- Damien Lemonnier and Paul Van Dooren, Balancing regular matrix pencils, SIAM J. Matrix Anal. Appl. 28 (2006), no. 1, 253–263. MR 2218952, DOI 10.1137/S0895479804440931
- B. G. Mertzios, Leverrier’s algorithm for singular systems, IEEE Trans. Automat. Control 29 (1984), no. 7, 652–653. MR 748757, DOI 10.1109/TAC.1984.1103602
- M. Sebek, H. Kwakernaak, D. Henrion and S. Pejchova, Recent progress in polynomial methods and Polynomial Toolbox for Matlab version 2.0, Proc. of the 37th IEEE Conference on Decision and Control, 1998, vol. 4, pp. 3661–3668.
- Kim-Chuan Toh and Lloyd N. Trefethen, Pseudozeros of polynomials and pseudospectra of companion matrices, Numer. Math. 68 (1994), no. 3, 403–425. MR 1313152, DOI 10.1007/s002110050069
- Paul Van Dooren and Patrick Dewilde, The eigenstructure of an arbitrary polynomial matrix: computational aspects, Linear Algebra Appl. 50 (1983), 545–579. MR 699575, DOI 10.1016/0024-3795(83)90069-1
- David S. Watkins, Fundamentals of matrix computations, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. Second editon. MR 1899577, DOI 10.1002/0471249718
Bibliographic Information
- P. Boito
- Affiliation: XLIM–DMI, UMR CNRS 7252, Faculté des Sciences et Techniques, 123 av. A. Thomas, 87060 Limoges, France
- MR Author ID: 840065
- Email: paola.boito@unilim.fr
- Y. Eidelman
- Affiliation: School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel
- MR Author ID: 234370
- Email: eideyu@post.tau.ac.il
- L. Gemignani
- Affiliation: Dipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
- MR Author ID: 315051
- Email: l.gemignani@di.unipi.it
- Received by editor(s): January 29, 2014
- Received by editor(s) in revised form: October 8, 2014, and December 6, 2014
- Published electronically: August 31, 2015
- Additional Notes: This work was partially supported by MIUR, grant number 20083KLJEZ
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 1753-1774
- MSC (2010): Primary 65F15, 65H17
- DOI: https://doi.org/10.1090/mcom/3020
- MathSciNet review: 3471106