A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces
HTML articles powered by AMS MathViewer
- by Maxim A. Olshanskii and Danil Safin;
- Math. Comp. 85 (2016), 1549-1570
- DOI: https://doi.org/10.1090/mcom/3030
- Published electronically: September 16, 2015
- PDF | Request permission
Abstract:
This paper studies a method for solving elliptic partial differential equations posed on hypersurfaces in $\mathbb {R}^N$, $N=2,3$. The method allows a surface to be given implicitly as a zero level of a level set function. A surface equation is extended to a narrow-band neighborhood of the surface. The resulting extended equation is a non-degenerate PDE, and it is solved on a bulk mesh that is unaligned to the surface. An unfitted finite element method is used to discretize extended equations. Error estimates are proved for finite element solutions in the bulk domain and restricted to the surface. The analysis admits finite elements of a higher order and gives sufficient conditions for archiving the optimal convergence order in the energy norm. Several numerical examples illustrate the properties of the method.References
- A. Agouzal and Yu. Vassilevski, On a discrete Hessian recovery for $P_1$ finite elements, J. Numer. Math. 10 (2002), no. 1, 1–12. MR 1905846, DOI 10.1515/JNMA.2002.1
- Owe Axelsson, Iterative solution methods, Cambridge University Press, Cambridge, 1994. MR 1276069, DOI 10.1017/CBO9780511624100
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- John W. Barrett and Charles M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes, IMA J. Numer. Anal. 4 (1984), no. 3, 309–325. MR 752608, DOI 10.1093/imanum/4.3.309
- Marcelo Bertalmío, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro, Variational problems and partial differential equations on implicit surfaces, J. Comput. Phys. 174 (2001), no. 2, 759–780. MR 1868103, DOI 10.1006/jcph.2001.6937
- Martin Burger, Finite element approximation of elliptic partial differential equations on implicit surfaces, Comput. Vis. Sci. 12 (2009), no. 3, 87–100. MR 2485787, DOI 10.1007/s00791-007-0081-x
- A. Y. Chernyshenko and M. A. Olshanskii, Non-degenerate Eulerian finite element method for solving PDEs on surfaces, Russian J. Numer. Anal. Math. Modelling 28 (2013), no. 2, 101–124. MR 3043557, DOI 10.1515/rnam-2013-0007
- Klaus Deckelnick, Gerhard Dziuk, Charles M. Elliott, and Claus-Justus Heine, An $h$-narrow band finite-element method for elliptic equations on implicit surfaces, IMA J. Numer. Anal. 30 (2010), no. 2, 351–376. MR 2608464, DOI 10.1093/imanum/drn049
- Alan Demlow and Gerhard Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), no. 1, 421–442. MR 2285862, DOI 10.1137/050642873
- Alan Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 2, 805–827. MR 2485433, DOI 10.1137/070708135
- U. Diewald, T. Preufer and M. Rumpf, Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces, IEEE Trans. Visualization Comput. Graphics, 6 (2000), pp. 139–149.
- Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988, pp. 142–155. MR 976234, DOI 10.1007/BFb0082865
- Gerhard Dziuk and Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. MR 3038698, DOI 10.1017/S0962492913000056
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Charles M. Elliott and Björn Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys. 229 (2010), no. 18, 6585–6612. MR 2660322, DOI 10.1016/j.jcp.2010.05.014
- Charles M. Elliott and Thomas Ranner, Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal. 33 (2013), no. 2, 377–402. MR 3047936, DOI 10.1093/imanum/drs022
- Robert L. Foote, Regularity of the distance function, Proc. Amer. Math. Soc. 92 (1984), no. 1, 153–155. MR 749908, DOI 10.1090/S0002-9939-1984-0749908-9
- John B. Greer, An improvement of a recent Eulerian method for solving PDEs on general geometries, J. Sci. Comput. 29 (2006), no. 3, 321–352. MR 2272322, DOI 10.1007/s10915-005-9012-5
- Sven Gross and Arnold Reusken, Numerical methods for two-phase incompressible flows, Springer Series in Computational Mathematics, vol. 40, Springer-Verlag, Berlin, 2011. MR 2799400, DOI 10.1007/978-3-642-19686-7
- D. Halpern, O. E. Jensen, and J. B. Grotberg, A theoretical study of surfactant and liquid delivery into the lung, J. Appl. Physiol. 85 (1998) pp. 333–352.
- Anita Hansbo and Peter Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 47-48, 5537–5552. MR 1941489, DOI 10.1016/S0045-7825(02)00524-8
- C. Maurer, R. Qi, and V. Raghavan, A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (2003), pp. 265–270.
- W. W. Mullins, Mass transport at interfaces in single component system, Metallurgical and Materials Trans. A, 26 (1995), pp. 1917–1925.
- B. Müller, F. Kummer, and M. Oberlack, Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg. 96 (2013), no. 8, 512–528. MR 3130061, DOI 10.1002/nme.4569
- Maxim A. Olshanskii, Arnold Reusken, and Jörg Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3339–3358. MR 2551197, DOI 10.1137/080717602
- Maxim A. Olshanskii and Arnold Reusken, A finite element method for surface PDEs: matrix properties, Numer. Math. 114 (2010), no. 3, 491–520. MR 2570076, DOI 10.1007/s00211-009-0260-4
- A. Toga, Brain Warping, Academic Press, New York, (1998).
- G. Turk, Generating textures on arbitrary surfaces using reaction-diffusion, Comput. Graphics, 25 (1991), 289–298.
- M.-G. Vallet, C.-M. Manole, J. Dompierre, S. Dufour, and F. Guibault, Numerical comparison of some Hessian recovery techniques, Internat. J. Numer. Methods Engrg. 72 (2007), no. 8, 987–1007. MR 2360556, DOI 10.1002/nme.2036
- Jian-Jun Xu and Hong-Kai Zhao, An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput. 19 (2003), no. 1-3, 573–594. Special issue in honor of the sixtieth birthday of Stanley Osher. MR 2028859, DOI 10.1023/A:1025336916176
Bibliographic Information
- Maxim A. Olshanskii
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- MR Author ID: 343398
- Email: molshan@math.uh.edu
- Danil Safin
- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- Email: dksafin@math.uh.edu
- Received by editor(s): January 29, 2014
- Received by editor(s) in revised form: December 30, 2014
- Published electronically: September 16, 2015
- Additional Notes: This work has been supported by NSF through the Division of Mathematical Sciences grant 1315993
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 1549-1570
- MSC (2010): Primary 65N15, 65N30, 76D45, 76T99
- DOI: https://doi.org/10.1090/mcom/3030
- MathSciNet review: 3471100