Explicit smoothed prime ideals theorems under GRH
HTML articles powered by AMS MathViewer
- by Loïc Grenié and Giuseppe Molteni;
- Math. Comp. 85 (2016), 1875-1899
- DOI: https://doi.org/10.1090/mcom3039
- Published electronically: October 6, 2015
- PDF | Request permission
Abstract:
Let $\psi _{\mathbb {K}}$ be the Chebyshev function of a number field $\mathbb {K}$. Let $\psi ^{(1)}_{\mathbb {K}}(x):=\int _{0}^{x}\psi _{\mathbb {K}}(t) \mathrm {d} t$ and $\psi ^{(2)}_{\mathbb {K}}(x):=2\int _{0}^{x}\psi ^{(1)}_{\mathbb {K}}(t) \mathrm {d} t$. We prove under GRH (Generalized Riemann Hypothesis) explicit inequalities for the differences $|\psi ^{(1)}_{\mathbb {K}}(x) - \tfrac {x^2}{2}|$ and $|\psi ^{(2)}_{\mathbb {K}}(x) - \tfrac {x^3}{3}|$. We deduce an efficient algorithm for the computation of the residue of the Dedekind zeta function and a bound on small-norm prime ideals.References
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- Eric Bach, Improved approximations for Euler products, Number theory (Halifax, NS, 1994), CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 13–28.
- Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65 (1996), no. 216, 1717–1735. MR 1355006, DOI 10.1090/S0025-5718-96-00763-6
- Karim Belabas, Francisco Diaz y Diaz, and Eduardo Friedman, Small generators of the ideal class group, Math. Comp. 77 (2008), no. 262, 1185–1197. MR 2373197, DOI 10.1090/S0025-5718-07-02003-0
- Karim Belabas and Eduardo Friedman, Computing the residue of the Dedekind zeta function, Math. Comp. 84 (2015), no. 291, 357–369. MR 3266965, DOI 10.1090/S0025-5718-2014-02843-3
- Johannes Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 27–41. MR 1104698
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- L. Grenié and G. Molteni, Explicit versions of the prime ideal theorem for Dedekind zeta functions under GRH, To appear in Math. Comp., DOI: http://dx.doi.org/10.1090/mcom3031.
- L. Grenié and G. Molteni, Zeros of Dedekind zeta functions under GRH, arXiv:1407.1375, To appear in Math. Comp., DOI: http://dx.doi.org/10.1090/mcom/3024.
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 409–464. MR 447191
- Youness Lamzouri, Xiannan Li, and Kannan Soundararajan, Conditional bounds for the least quadratic non-residue and related problems, Math. Comp. 84 (2015), no. 295, 2391–2412. MR 3356031, DOI 10.1090/S0025-5718-2015-02925-1
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), no. 3, 275–286. MR 376613, DOI 10.1007/BF01389854
- A. M. Odlyzko, Discriminant bounds, http://www.dtc.umn.edu/~odlyzko/unpublished/index.html, 1976.
- A. M. Odlyzko, Lower bounds for discriminants of number fields, Acta Arith. 29 (1976), no. 3, 275–297. MR 401704, DOI 10.4064/aa-29-3-275-297
- A. M. Odlyzko, Lower bounds for discriminants of number fields. II, Tôhoku Math. J. 29 (1977), no. 2, 209–216. MR 441918, DOI 10.2748/tmj/1178240652
- A. M. Odlyzko, On conductors and discriminants, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London-New York, 1977, pp. 377–407. MR 453701
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762
- J. Oesterlé, Versions effectives du théorème de Chebotarev sous l’hypothèse de Riemann généralisée, Astérisque 61 (1979), 165–167.
- The PARI Group, Bordeaux, megrez number field tables, 2008, Package nftables.tgz from http://pari.math.u-bordeaux.fr/packages.html.
- The PARI Group, Bordeaux, PARI/GP, version 2.6.0, 2013, available from http://pari.math.u-bordeaux.fr/.
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI 10.1007/BF01405166
- Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280–292. MR 3111568, DOI 10.1016/j.jnt.2013.07.017
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Bibliographic Information
- Loïc Grenié
- Affiliation: Dipartimento di Ingegneria gestionale, dell’informazione e della produzione, Università di Bergamo, viale Marconi 5, 24044 Dalmine, Italy
- MR Author ID: 712882
- Email: loic.grenie@gmail.com
- Giuseppe Molteni
- Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italy
- MR Author ID: 357391
- Email: giuseppe.molteni1@unimi.it
- Received by editor(s): October 18, 2013
- Received by editor(s) in revised form: January 15, 2014, June 6, 2014, and January 14, 2015
- Published electronically: October 6, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 1875-1899
- MSC (2010): Primary 11R42; Secondary 11Y40
- DOI: https://doi.org/10.1090/mcom3039
- MathSciNet review: 3471112