## Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation

HTML articles powered by AMS MathViewer

- by Wenbin Chen, Yuan Liu, Cheng Wang and Steven M. Wise PDF
- Math. Comp.
**85**(2016), 2231-2257 Request permission

## Abstract:

We present an error analysis for an unconditionally energy stable, fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, a modified Cahn-Hilliard equation coupled with the Darcy flow law. The scheme, proposed by S. M. Wise, is based on the idea of convex splitting. In this paper, we rigorously prove first order convergence in time and second order convergence in space. Instead of the (discrete) $L_s^\infty (0,T;L_h^2) \cap L_s^2 (0,T; H_h^2)$ error estimate, which would represent the typical approach, we provide a discrete $L_s^\infty (0,T; H_h^1) \cap L_s^2 (0,T; H_h^3 )$ error estimate for the phase variable, which allows us to treat the nonlinear convection term in a straightforward way. Our convergence is unconditional in the sense that the time step $s$ is in no way constrained by the mesh spacing $h$. This is accomplished with the help of an $L_s^2 (0,T;H_h^3)$ bound of the numerical approximation of the phase variable. To facilitate both the stability and convergence analyses, we establish a finite difference analog of a Gagliardo-Nirenberg type inequality.## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - D. M. Anderson, G. B. McFadden, and A. A. Wheeler,
*Diffuse-interface methods in fluid mechanics*, Annual review of fluid mechanics, Vol. 30, Annu. Rev. Fluid Mech., vol. 30, Annual Reviews, Palo Alto, CA, 1998, pp. 139–165. MR**1609626**, DOI 10.1146/annurev.fluid.30.1.139 - Nicholas D. Alikakos, Peter W. Bates, and Xinfu Chen,
*Convergence of the Cahn-Hilliard equation to the Hele-Shaw model*, Arch. Rational Mech. Anal.**128**(1994), no. 2, 165–205. MR**1308851**, DOI 10.1007/BF00375025 - Nicholas D. Alikakos and Giorgio Fusco,
*The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions*, Indiana Univ. Math. J.**42**(1993), no. 2, 637–674. MR**1237062**, DOI 10.1512/iumj.1993.42.42028 - Garth A. Baker, Vassilios A. Dougalis, and Ohannes A. Karakashian,
*On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations*, Math. Comp.**39**(1982), no. 160, 339–375. MR**669634**, DOI 10.1090/S0025-5718-1982-0669634-0 - L’ubomír Baňas and Robert Nürnberg,
*Adaptive finite element methods for Cahn-Hilliard equations*, J. Comput. Appl. Math.**218**(2008), no. 1, 2–11. MR**2431593**, DOI 10.1016/j.cam.2007.04.030 - Ľubomír Baňas and Robert Nürnberg,
*A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy*, M2AN Math. Model. Numer. Anal.**43**(2009), no. 5, 1003–1026. MR**2559742**, DOI 10.1051/m2an/2009015 - John W. Barrett and James F. Blowey,
*An optimal error bound for a finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy*, M2AN Math. Model. Numer. Anal.**33**(1999), no. 5, 971–987. MR**1726719**, DOI 10.1051/m2an:1999129 - A. Baskaran, J. S. Lowengrub, C. Wang, and S. M. Wise,
*Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation*, SIAM J. Numer. Anal.**51**(2013), no. 5, 2851–2873. MR**3118257**, DOI 10.1137/120880677 - J. W. Cahn and J. E. Hilliard,
*Free energy of a nonuniform system. I. Interfacial free energy*, J. Chem. Phys.,**28**(1958), 258-267. - Wenbin Chen, Sidafa Conde, Cheng Wang, Xiaoming Wang, and Steven M. Wise,
*A linear energy stable scheme for a thin film model without slope selection*, J. Sci. Comput.**52**(2012), no. 3, 546–562. MR**2948706**, DOI 10.1007/s10915-011-9559-2 - Wenbin Chen, Cheng Wang, Xiaoming Wang, and Steven M. Wise,
*A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection*, J. Sci. Comput.**59**(2014), no. 3, 574–601. MR**3199497**, DOI 10.1007/s10915-013-9774-0 - Xinfu Chen,
*Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces*, Comm. Partial Differential Equations**19**(1994), no. 7-8, 1371–1395. MR**1284813**, DOI 10.1080/03605309408821057 - Xinfu Chen,
*Global asymptotic limit of solutions of the Cahn-Hilliard equation*, J. Differential Geom.**44**(1996), no. 2, 262–311. MR**1425577** - Xinfu Chen, Charlie M. Elliott, Andy Gardiner, and Jennifer Jing Zhao,
*Convergence of numerical solutions to the Allen-Cahn equation*, Appl. Anal.**69**(1998), no. 1-2, 47–56. MR**1708186**, DOI 10.1080/00036819808840645 - Amanda E. Diegel, Xiaobing H. Feng, and Steven M. Wise,
*Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system*, SIAM J. Numer. Anal.**53**(2015), no. 1, 127–152. MR**3296618**, DOI 10.1137/130950628 - Qiang Du and R. A. Nicolaides,
*Numerical analysis of a continuum model of phase transition*, SIAM J. Numer. Anal.**28**(1991), no. 5, 1310–1322. MR**1119272**, DOI 10.1137/0728069 - Weinan E and Jian-Guo Liu,
*Projection method. III. Spatial discretization on the staggered grid*, Math. Comp.**71**(2002), no. 237, 27–47. MR**1862987**, DOI 10.1090/S0025-5718-01-01313-8 - Charles M. Elliott and Donald A. French,
*Numerical studies of the Cahn-Hilliard equation for phase separation*, IMA J. Appl. Math.**38**(1987), no. 2, 97–128. MR**983721**, DOI 10.1093/imamat/38.2.97 - Charles M. Elliott and Donald A. French,
*A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation*, SIAM J. Numer. Anal.**26**(1989), no. 4, 884–903. MR**1005515**, DOI 10.1137/0726049 - C. M. Elliott, D. A. French, and F. A. Milner,
*A second order splitting method for the Cahn-Hilliard equation*, Numer. Math.**54**(1989), no. 5, 575–590. MR**978609**, DOI 10.1007/BF01396363 - Charles M. Elliott and Stig Larsson,
*Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation*, Math. Comp.**58**(1992), no. 198, 603–630, S33–S36. MR**1122067**, DOI 10.1090/S0025-5718-1992-1122067-1 - David J. Eyre,
*Unconditionally gradient stable time marching the Cahn-Hilliard equation*, Computational and mathematical models of microstructural evolution (San Francisco, CA, 1998) Mater. Res. Soc. Sympos. Proc., vol. 529, MRS, Warrendale, PA, 1998, pp. 39–46. MR**1676409**, DOI 10.1557/PROC-529-39 - Xiaobing Feng,
*Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows*, SIAM J. Numer. Anal.**44**(2006), no. 3, 1049–1072. MR**2231855**, DOI 10.1137/050638333 - Xiaobing Feng, Yinnian He, and Chun Liu,
*Analysis of finite element approximations of a phase field model for two-phase fluids*, Math. Comp.**76**(2007), no. 258, 539–571. MR**2291827**, DOI 10.1090/S0025-5718-06-01915-6 - Xiaobing Feng and Ohannes A. Karakashian,
*Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition*, Math. Comp.**76**(2007), no. 259, 1093–1117. MR**2299767**, DOI 10.1090/S0025-5718-07-01985-0 - Xiaobing Feng and Andreas Prohl,
*Error analysis of a mixed finite element method for the Cahn-Hilliard equation*, Numer. Math.**99**(2004), no. 1, 47–84. MR**2101784**, DOI 10.1007/s00211-004-0546-5 - Xiaobing Feng and Steven Wise,
*Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation*, SIAM J. Numer. Anal.**50**(2012), no. 3, 1320–1343. MR**2970745**, DOI 10.1137/110827119 - Xiaobing Feng and Haijun Wu,
*A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow*, J. Comput. Math.**26**(2008), no. 6, 767–796. MR**2464735** - S. Gottlieb, F. Tone, C. Wang, X. Wang, and D. Wirosoetisno,
*Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations*, SIAM J. Numer. Anal.**50**(2012), no. 1, 126–150. MR**2888307**, DOI 10.1137/110834901 - F. Harlow and J. Welch,
*Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface*, Phys. Fluids,**8**(1965), 2182-2189. - Li-ping He,
*Error estimation of a class of stable spectral approximation to the Cahn-Hilliard equation*, J. Sci. Comput.**41**(2009), no. 3, 461–482. MR**2556474**, DOI 10.1007/s10915-009-9309-x - Yinnian He and Yunxian Liu,
*Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation*, Numer. Methods Partial Differential Equations**24**(2008), no. 6, 1485–1500. MR**2453945**, DOI 10.1002/num.20328 - Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub,
*Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation*, J. Comput. Phys.**228**(2009), no. 15, 5323–5339. MR**2541456**, DOI 10.1016/j.jcp.2009.04.020 - N. Khiari, T. Achouri, M. L. Ben Mohamed, and K. Omrani,
*Finite difference approximate solutions for the Cahn-Hilliard equation*, Numer. Methods Partial Differential Equations**23**(2007), no. 2, 437–455. MR**2289461**, DOI 10.1002/num.20189 - Hyeong-Gi Lee, J. S. Lowengrub, and J. Goodman,
*Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration*, Phys. Fluids**14**(2002), no. 2, 492–513. MR**1878351**, DOI 10.1063/1.1425843 - Hyeong-Gi Lee, J. S. Lowengrub, and J. Goodman,
*Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime*, Phys. Fluids**14**(2002), no. 2, 514–545. MR**1878907**, DOI 10.1063/1.1425844 - Roger Samelson, Roger Temam, Cheng Wang, and Shouhong Wang,
*Surface pressure Poisson equation formulation of the primitive equations: numerical schemes*, SIAM J. Numer. Anal.**41**(2003), no. 3, 1163–1194. MR**2005199**, DOI 10.1137/S0036142901396284 - Jie Shen, Cheng Wang, Xiaoming Wang, and Steven M. Wise,
*Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy*, SIAM J. Numer. Anal.**50**(2012), no. 1, 105–125. MR**2888306**, DOI 10.1137/110822839 - Jie Shen and Xiaofeng Yang,
*Numerical approximations of Allen-Cahn and Cahn-Hilliard equations*, Discrete Contin. Dyn. Syst.**28**(2010), no. 4, 1669–1691. MR**2679727**, DOI 10.3934/dcds.2010.28.1669 - A. Shinozaki and Y. Oono,
*Spinodal decomposition in a Hele-Shaw cell*, Phys. Rev. A**45**(1992), R2161-R2164. - Zhi Zhong Sun,
*A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation*, Math. Comp.**64**(1995), no. 212, 1463–1471. MR**1308465**, DOI 10.1090/S0025-5718-1995-1308465-4 - Cheng Wang, Xiaoming Wang, and Steven M. Wise,
*Unconditionally stable schemes for equations of thin film epitaxy*, Discrete Contin. Dyn. Syst.**28**(2010), no. 1, 405–423. MR**2629487**, DOI 10.3934/dcds.2010.28.405 - C. Wang and S. M. Wise,
*An energy stable and convergent finite-difference scheme for the modified phase field crystal equation*, SIAM J. Numer. Anal.**49**(2011), no. 3, 945–969. MR**2802554**, DOI 10.1137/090752675 - Xiaoming Wang and Hao Wu,
*Long-time behavior for the Hele-Shaw-Cahn-Hilliard system*, Asymptot. Anal.**78**(2012), no. 4, 217–245. MR**3012658** - Xiaoming Wang and Zhifei Zhang,
*Well-posedness of the Hele-Shaw-Cahn-Hilliard system*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**30**(2013), no. 3, 367–384. MR**3061427**, DOI 10.1016/j.anihpc.2012.06.003 - S. M. Wise,
*Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations*, J. Sci. Comput.**44**(2010), no. 1, 38–68. MR**2647498**, DOI 10.1007/s10915-010-9363-4 - S. M. Wise, C. Wang, and J. S. Lowengrub,
*An energy-stable and convergent finite-difference scheme for the phase field crystal equation*, SIAM J. Numer. Anal.**47**(2009), no. 3, 2269–2288. MR**2519603**, DOI 10.1137/080738143

## Additional Information

**Wenbin Chen**- Affiliation: Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai, People’s Republic of China 200433
- Email: wbchen@fudan.edu.cn
**Yuan Liu**- Affiliation: School of Mathematical Sciences, Fudan University, Shanghai, People’s Republic of China 200433
- Email: 12110180072@fudan.edu.cn
**Cheng Wang**- Affiliation: Department of Mathematics, University of Massachusetts, North Dartmouth, Massachusetts 02747
- MR Author ID: 652762
- Email: cwang1@umassd.edu
**Steven M. Wise**- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996
- MR Author ID: 615795
- ORCID: 0000-0003-3824-2075
- Email: swise1@utk.edu
- Received by editor(s): March 24, 2014
- Received by editor(s) in revised form: November 19, 2014, and February 23, 2015
- Published electronically: December 14, 2015
- Additional Notes: The third author is the corresponding author
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**85**(2016), 2231-2257 - MSC (2010): Primary 65M06, 65M12, 35K55, 76D05
- DOI: https://doi.org/10.1090/mcom3052
- MathSciNet review: 3511281