The Costabel-Stephan system of boundary integral equations in the time domain
HTML articles powered by AMS MathViewer
- by Tianyu Qiu and Francisco-Javier Sayas;
- Math. Comp. 85 (2016), 2341-2364
- DOI: https://doi.org/10.1090/mcom3053
- Published electronically: November 18, 2015
- PDF | Request permission
Abstract:
In this paper we formulate a transmission problem for the transient acoustic wave equation as a system of retarded boundary integral equations. We then analyse a fully discrete method using a general Galerkin semidiscretization-in-space and convolution quadrature (CQ) in time. All proofs are developed using recent techniques based on the theory of evolution equations. Some numerical experiments are provided.References
- Toufic Abboud, Patrick Joly, Jerónimo Rodríguez, and Isabelle Terrasse, Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains, J. Comput. Phys. 230 (2011), no. 15, 5877–5907. MR 2804957, DOI 10.1016/j.jcp.2011.03.062
- A. Bamberger and T. Ha Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I, Math. Methods Appl. Sci. 8 (1986), no. 3, 405–435 (French, with English summary). MR 859833
- A. Bamberger and T. Ha Duong, Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide, Math. Methods Appl. Sci. 8 (1986), no. 4, 598–608 (French, with English summary). MR 870995
- Lehel Banjai, Antonio R. Laliena, and Francisco-Javier Sayas, Fully discrete Kirchhoff formulas with CQ-BEM, IMA J. Numer. Anal. 35 (2015), no. 2, 859–884. MR 3335227, DOI 10.1093/imanum/dru017
- Lehel Banjai, Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments, SIAM J. Sci. Comput. 32 (2010), no. 5, 2964–2994. MR 2729447, DOI 10.1137/090775981
- Lehel Banjai, Christian Lubich, and Francisco-Javier Sayas, Stable numerical coupling of exterior and interior problems for the wave equation, Numer. Math. 129 (2015), no. 4, 611–646. MR 3317813, DOI 10.1007/s00211-014-0650-0
- Lehel Banjai, Matthias Messner, and Martin Schanz, Runge-Kutta convolution quadrature for the boundary element method, Comput. Methods Appl. Mech. Engrg. 245/246 (2012), 90–101. MR 2969188, DOI 10.1016/j.cma.2012.07.007
- Lehel Banjai and Martin Schanz, Wave propagation problems treated with convolution quadrature and BEM, Fast boundary element methods in engineering and industrial applications, Lect. Notes Appl. Comput. Mech., vol. 63, Springer, Heidelberg, 2012, pp. 145–184. MR 3059731, DOI 10.1007/978-3-642-25670-7_{5}
- Yassine Boubendir, Victor Dominguez, David Levadoux, and Catalin Turc, Regularized combined field integral equations for acoustic transmission problems, 2013, arXiv:1312.6598.
- John Fun-Choi Chan and Peter Monk, Time dependent electromagnetic scattering by a penetrable obstacle, BIT 55 (2015), no. 1, 5–31. MR 3313600, DOI 10.1007/s10543-014-0500-6
- Qiang Chen and Peter Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math. Anal. 46 (2014), no. 5, 3107–3130. MR 3257633, DOI 10.1137/110833555
- Xavier Claeys and Ralf Hiptmair, Multi-trace boundary integral formulation for acoustic scattering by composite structures, Comm. Pure Appl. Math. 66 (2013), no. 8, 1163–1201. MR 3069956, DOI 10.1002/cpa.21462
- Martin Costabel and Ernst Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl. 106 (1985), no. 2, 367–413. MR 782799, DOI 10.1016/0022-247X(85)90118-0
- Víctor Domínguez, Sijiang L. Lu, and Francisco-Javier Sayas, A Nyström flavored Calderón calculus of order three for two dimensional waves, time-harmonic and transient, Comput. Math. Appl. 67 (2014), no. 1, 217–236. MR 3141718, DOI 10.1016/j.camwa.2013.11.005
- Víctor Domínguez and Francisco-Javier Sayas, Some properties of layer potentials and boundary integral operators for the wave equation, J. Integral Equations Appl. 25 (2013), no. 2, 253–294. MR 3161614, DOI 10.1216/JIE-2013-25-2-253
- Silvia Falletta and Giovanni Monegato, An exact non reflecting boundary condition for 2D time-dependent wave equation problems, Wave Motion 51 (2014), no. 1, 168–192. MR 3127695, DOI 10.1016/j.wavemoti.2013.06.001
- S. P. Groth, D. P. Hewett, and S. Langdon, Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons, IMA Journal of Applied Mathematics (2013).
- Matthew Hassell and Francisco-Javier Sayas, Convolution quadrature for wave simulations, 2014, arXiv:1407.0345.
- R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems, Adv. Comput. Math. 37 (2012), no. 1, 39–91. MR 2927645, DOI 10.1007/s10444-011-9194-3
- R. E. Kleinman and P. A. Martin, On single integral equations for the transmission problem of acoustics, SIAM J. Appl. Math. 48 (1988), no. 2, 307–325. MR 933037, DOI 10.1137/0148016
- R. Kreß and G. F. Roach, Transmission problems for the Helmholtz equation, J. Mathematical Phys. 19 (1978), no. 6, 1433–1437. MR 495653, DOI 10.1063/1.523808
- Antonio R. Laliena and Francisco-Javier Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math. 112 (2009), no. 4, 637–678. MR 2507621, DOI 10.1007/s00211-009-0220-z
- C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), no. 2, 129–145. MR 923707, DOI 10.1007/BF01398686
- Ch. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math. 67 (1994), no. 3, 365–389. MR 1269502, DOI 10.1007/s002110050033
- F.-J. Sayas, Retarded potentials and time domain integral equations: a roadmap, to appear in Springer series in computational mathematics, 2015.
- Francisco-Javier Sayas, Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations, Numer. Math. 124 (2013), no. 1, 121–149. MR 3041732, DOI 10.1007/s00211-012-0506-4
- Rodolfo H. Torres and Grant V. Welland, The Helmholtz equation and transmission problems with Lipschitz interfaces, Indiana Univ. Math. J. 42 (1993), no. 4, 1457–1485. MR 1266102, DOI 10.1512/iumj.1993.42.42067
- T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems, Math. Methods Appl. Sci. 11 (1989), no. 2, 185–213. MR 984053, DOI 10.1002/mma.1670110203
- A. Zinn, A numerical method for transmission problems for the Helmholtz equation, Computing 41 (1989), no. 3, 267–274 (English, with German summary). MR 988240, DOI 10.1007/BF02259097
Bibliographic Information
- Tianyu Qiu
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- Email: qty@udel.edu
- Francisco-Javier Sayas
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 621885
- Email: fjsayas@udel.edu
- Received by editor(s): August 13, 2014
- Received by editor(s) in revised form: February 26, 2015
- Published electronically: November 18, 2015
- Additional Notes: This work was partially funded by NSF (grant DMS 1216356)
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 2341-2364
- MSC (2010): Primary 65N30, 65N38, 65N12, 65N15
- DOI: https://doi.org/10.1090/mcom3053
- MathSciNet review: 3511284