Stability properties of implicit–explicit multistep methods for a class of nonlinear parabolic equations
HTML articles powered by AMS MathViewer
- by Georgios Akrivis;
- Math. Comp. 85 (2016), 2217-2229
- DOI: https://doi.org/10.1090/mcom/3070
- Published electronically: December 16, 2015
- PDF | Request permission
Abstract:
We consider the discretization of a special class of nonlinear parabolic equations, including the complex Ginzburg–Landau equation, by implicit–explicit multistep methods and establish stability under a best possible linear stability condition.References
- Georgios Akrivis, Implicit-explicit multistep methods for nonlinear parabolic equations, Math. Comp. 82 (2013), no. 281, 45–68. MR 2983015, DOI 10.1090/S0025-5718-2012-02628-7
- Georgios Akrivis, Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations, SIAM J. Numer. Anal. 53 (2015), no. 1, 464–484. MR 3313566, DOI 10.1137/140962619
- Georgios Akrivis, Michel Crouzeix, and Charalambos Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comp. 67 (1998), no. 222, 457–477. MR 1458216, DOI 10.1090/S0025-5718-98-00930-2
- Georgios Akrivis, Michel Crouzeix, and Charalambos Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999), no. 4, 521–541. MR 1701828, DOI 10.1007/s002110050429
- Georgios Akrivis and Fotini Karakatsani, Modified implicit-explicit BDF methods for nonlinear parabolic equations, BIT 43 (2003), no. 3, 467–483. MR 2026710, DOI 10.1023/B:BITN.0000007057.13132.b3
- G. Akrivis and E. Katsoprinakis, Backward difference formulae: new multipliers and stability properties for parabolic equations, Math. Comp. (2015) DOI: 10.1090/mcom3055.
- G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math. 131 (2015), no. 4, 713–735, DOI 10.1007/s00211-015-0702-0.
- Igor S. Aranson and Lorenz Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys. 74 (2002), no. 1, 99–143. MR 1895097, DOI 10.1103/RevModPhys.74.99
- Fabrice Bethuel, Haïm Brezis, and Frédéric Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1269538, DOI 10.1007/978-1-4612-0287-5
- C. Cartes, O. Descalzi, and H. R. Brand, Exploding dissipative solitons in the cubic-quintic complex Ginzburg–Landau equation in one and two spatial dimensions. A review and a perspective, Eur. Phys. J. Special Topics 223 (2014) 2145–2159.
- Michel Crouzeix, Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques, Numer. Math. 35 (1980), no. 3, 257–276 (French, with English summary). MR 592157, DOI 10.1007/BF01396412
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 2010. Stiff and differential-algebraic problems; Second revised edition, paperback. MR 2657217, DOI 10.1007/978-3-642-05221-7
- Kanemitsu Katou, Asymptotic spatial patterns on the complex time-dependent Ginzburg-Landau equation, J. Phys. A 19 (1986), no. 17, L1063–L1066. MR 868381
- C. Lubich, On the convergence of multistep methods for nonlinear stiff differential equations, Numer. Math. 58 (1991), no. 8, 839–853. MR 1098868, DOI 10.1007/BF01385657
- Christian Lubich, Dhia Mansour, and Chandrasekhar Venkataraman, Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal. 33 (2013), no. 4, 1365–1385. MR 3119720, DOI 10.1093/imanum/drs044
- Ken-ichi Maruno, Adrian Ankiewicz, and Nail Akhmediev, Exact soliton solutions of the one-dimensional complex Swift-Hohenberg equation, Phys. D 176 (2003), no. 1-2, 44–66. MR 1957424, DOI 10.1016/S0167-2789(02)00708-X
- Olavi Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim. 3 (1981), no. 4, 377–423. MR 636736, DOI 10.1080/01630568108816097
- Etienne Sandier and Sylvia Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, vol. 70, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2279839
- Giuseppe Savaré, $A(\Theta )$-stable approximations of abstract Cauchy problems, Numer. Math. 65 (1993), no. 3, 319–335. MR 1227025, DOI 10.1007/BF01385755
Bibliographic Information
- Georgios Akrivis
- Affiliation: Department of Computer Science and Engineering, University of Ioannina, 451$\,$10 Ioannina, Greece
- MR Author ID: 24080
- Email: akrivis@cs.uoi.gr
- Received by editor(s): April 22, 2014
- Received by editor(s) in revised form: February 25, 2015, and March 30, 2015
- Published electronically: December 16, 2015
- Additional Notes: This work was supported in part by GSRT-ESET “Excellence” grant 1456.
- © Copyright 2015
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 85 (2016), 2217-2229
- MSC (2010): Primary 65M12, 65M60; Secondary 65L06
- DOI: https://doi.org/10.1090/mcom/3070
- MathSciNet review: 3511280