## Presentations of groups acting discontinuously on direct products of hyperbolic spaces

HTML articles powered by AMS MathViewer

- by E. Jespers, A. Kiefer and Á. del Río;
- Math. Comp.
**85**(2016), 2515-2552 - DOI: https://doi.org/10.1090/mcom/3071
- Published electronically: December 31, 2015
- PDF | Request permission

## Abstract:

The problem of describing the group of units $\mathcal {U}(\mathbb {Z} G)$ of the integral group ring $\mathbb {Z} G$ of a finite group $G$ has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the context of orders, a central problem is to describe a presentation of the unit group of an order $\mathcal {O}$ in the simple epimorphic images $A$ of the rational group algebra $\mathbb {Q} G$. Making use of the presentation part of Poincaré’s polyhedron theorem, Pita, del Río and Ruiz proposed such a method for a large family of finite groups $G$ and consequently Jespers, Pita, del Río, Ruiz and Zalesskii described the structure of $\mathcal {U}(\mathbb {Z} G)$ for a large family of finite groups $G$. In order to handle many more groups, one would like to extend Poincaré’s method to discontinuous subgroups of the group of isometries of a direct product of hyperbolic spaces. If the algebra $A$ has degree 2 then via the Galois embeddings of the centre of the algebra $A$ one considers the group of reduced norm one elements of the order $\mathcal {O}$ as such a group and thus one would obtain a solution to the mentioned problem. This would provide presentations of the unit group of orders in the simple components of degree 2 of $\mathbb {Q} G$ and in particular describe the unit group of $\mathbb {Z} G$ for every group $G$ with irreducible character degrees less than or equal to 2. The aim of this paper is to initiate this approach by executing this method on the Hilbert modular group, i.e., the projective linear group of degree two over the ring of integers in a real quadratic extension of the rationals. This group acts discontinuously on a direct product of two hyperbolic spaces of dimension two. The fundamental domain constructed is an analogue of the Ford domain of a Fuchsian or a Kleinian group.## References

- S. A. Amitsur,
*Groups with representations of bounded degree. II*, Illinois J. Math.**5**(1961), 198–205. MR**122893** - Jacek Bochnak, Michel Coste, and Marie-Françoise Roy,
*Real algebraic geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR**1659509**, DOI 10.1007/978-3-662-03718-8 - Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR**1393195** - A. I. Borevich and I. R. Shafarevich,
*Number theory*, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR**195803** - Capi Corrales, Eric Jespers, Guilherme Leal, and Angel del Río,
*Presentations of the unit group of an order in a non-split quaternion algebra*, Adv. Math.**186**(2004), no. 2, 498–524. MR**2073916**, DOI 10.1016/j.aim.2003.07.015 - Oliver Braun, Renaud Coulangeon, Gabriele Nebe, and Sebastian Schönnenbeck,
*Computing in arithmetic groups with Voronoï’s algorithm*, J. Algebra**435**(2015), 263–285. MR**3343219**, DOI 10.1016/j.jalgebra.2015.01.022 - Harvey Cohn,
*A numerical survey of the floors of various Hilbert fundamental domains*, Math. Comp.**19**(1965), 594–605. MR**195818**, DOI 10.1090/S0025-5718-1965-0195818-4 - Harvey Cohn,
*On the shape of the fundamental domain of the Hilbert modular group*, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 190–202. - Jesse Ira Deutsch,
*Conjectures on the fundamental domain of the Hilbert modular group*, Comput. Math. Appl.**59**(2010), no. 2, 700–705. MR**2575559**, DOI 10.1016/j.camwa.2009.10.023 - J. Elstrodt, F. Grunewald, and J. Mennicke,
*Groups acting on hyperbolic space*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR**1483315**, DOI 10.1007/978-3-662-03626-6 - Eric Jespers, Ángel del Río, and Inneke Van Gelder,
*Writing units of integral group rings of finite abelian groups as a product of Bass units*, Math. Comp.**83**(2014), no. 285, 461–473. MR**3120600**, DOI 10.1090/S0025-5718-2013-02718-4 - E. Jespers, S. O. Juriaans, A. Kiefer, A. de A. e Silva, and A. C. Souza Filho,
*From the Poincaré theorem to generators of the unit group of integral group rings of finite groups*, Math. Comp.**84**(2015), no. 293, 1489–1520. MR**3315518**, DOI 10.1090/S0025-5718-2014-02865-2 - E. Jespers, A. Kiefer, and A. Del Río,
*Revisiting Poincaré’s theorem on presentations of discontinuous groups via fundamental polyhedra*, Expositiones Mathematicae (2015). - Eric Jespers and Guilherme Leal,
*Generators of large subgroups of the unit group of integral group rings*, Manuscripta Math.**78**(1993), no. 3, 303–315. MR**1206159**, DOI 10.1007/BF02599315 - Eric Jespers, Gabriela Olteanu, Ángel del Río, and Inneke Van Gelder,
*Group rings of finite strongly monomial groups: central units and primitive idempotents*, J. Algebra**387**(2013), 99–116. MR**3056688**, DOI 10.1016/j.jalgebra.2013.04.020 - E. Jespers and M. M. Parmenter,
*Units of group rings of groups of order $16$*, Glasgow Math. J.**35**(1993), no. 3, 367–379. MR**1240380**, DOI 10.1017/S0017089500009952 - Eric Jespers, Antonio Pita, Ángel del Río, Manuel Ruiz, and Pavel Zalesskii,
*Groups of units of integral group rings commensurable with direct products of free-by-free groups*, Adv. Math.**212**(2007), no. 2, 692–722. MR**2329317**, DOI 10.1016/j.aim.2006.11.005 - Hans Maass,
*Über Gruppen von hyperabelschen Transformationen*, S.-B. Heidelberger Akad. Wiss.**1940**(1940), no. 2, 26 (German). MR**3405** - A. M. Macbeath,
*Groups of homeomorphisms of a simply connected space*, Ann. of Math. (2)**79**(1964), 473–488. MR**160848**, DOI 10.2307/1970405 - A. M. Macbeath,
*Groups of homeomorphisms of a simply connected space*, Ann. of Math. (2)**79**(1964), 473–488. MR**160848**, DOI 10.2307/1970405 - Bernard Maskit,
*Kleinian groups*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR**959135** - Gabriela Olteanu and Ángel del Río,
*Group algebras of Kleinian type and groups of units*, J. Algebra**318**(2007), no. 2, 856–870. MR**2371975**, DOI 10.1016/j.jalgebra.2007.03.026 - Antonio Pita and Ángel del Río,
*Presentation of the group of units of $\Bbb ZD^-_{16}$*, Groups, rings and group rings, Lect. Notes Pure Appl. Math., vol. 248, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 305–314. MR**2226206**, DOI 10.1201/9781420010961.ch30 - Antonio Pita, Ángel Del Río, and Manuel Ruiz,
*Groups of units of integral group rings of Kleinian type*, Trans. Amer. Math. Soc.**357**(2005), no. 8, 3215–3237. MR**2135743**, DOI 10.1090/S0002-9947-04-03574-3 - Kathleen L. Petersen,
*Counting cusps of subgroups of $\textrm {PSL}_2({\scr O}_K)$*, Proc. Amer. Math. Soc.**136**(2008), no. 7, 2387–2393. MR**2390505**, DOI 10.1090/S0002-9939-08-09262-9 - John G. Ratcliffe,
*Foundations of hyperbolic manifolds*, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR**1299730**, DOI 10.1007/978-1-4757-4013-4 - Jürgen Ritter and Sudarshan K. Sehgal,
*Generators of subgroups of $U(\mathbf Z G)$*, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 331–347. MR**1003362**, DOI 10.1090/conm/093/1003362 - Jürgen Ritter and Sudarshan K. Sehgal,
*Construction of units in group rings of monomial and symmetric groups*, J. Algebra**142**(1991), no. 2, 511–526. MR**1127078**, DOI 10.1016/0021-8693(91)90322-Y - Jürgen Ritter and Sudarshan K. Sehgal,
*Construction of units in integral group rings of finite nilpotent groups*, Trans. Amer. Math. Soc.**324**(1991), no. 2, 603–621. MR**987166**, DOI 10.1090/S0002-9947-1991-0987166-9 - S. K. Sehgal,
*Units in integral group rings*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. With an appendix by Al Weiss. MR**1242557** - Igor R. Shafarevich,
*Basic algebraic geometry. 1*, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR**1328833** - Richard G. Swan,
*Generators and relations for certain special linear groups*, Advances in Math.**6**(1971), 1–77 (1971). MR**284516**, DOI 10.1016/0001-8708(71)90027-2 - John Voight,
*Computing fundamental domains for Fuchsian groups*, J. Théor. Nombres Bordeaux**21**(2009), no. 2, 469–491 (English, with English and French summaries). MR**2541438**

## Bibliographic Information

**E. Jespers**- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- MR Author ID: 94560
- Email: efjesper@vub.ac.be
**A. Kiefer**- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- Email: akiefer@vub.ac.be
**Á. del Río**- Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
- MR Author ID: 288713
- Email: adelrio@um.es
- Received by editor(s): January 7, 2015
- Received by editor(s) in revised form: April 12, 2015
- Published electronically: December 31, 2015
- Additional Notes: The first author is supported in part by Onderzoeksraad of Vrije Universiteit Brussel and Fonds voor Wetenschappelijk Onderzoek (Flanders). The second author is supported by Fonds voor Wetenschappelijk Onderzoek (Flanders)-Belgium. The third author is partially supported by the Spanish Government under Grant MTM2012-35240 with “Fondos FEDER”.
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**85**(2016), 2515-2552 - MSC (2010): Primary 20G20, 22E40, 16S34, 16U60
- DOI: https://doi.org/10.1090/mcom/3071
- MathSciNet review: 3511291