Analysis and approximation of stochastic nerve axon equations
HTML articles powered by AMS MathViewer
- by Martin Sauer and Wilhelm Stannat;
- Math. Comp. 85 (2016), 2457-2481
- DOI: https://doi.org/10.1090/mcom/3068
- Published electronically: January 8, 2016
- PDF | Request permission
Abstract:
We consider spatially extended conductance based neuronal models with noise described by a stochastic reaction diffusion equation with additive noise coupled to a control variable with multiplicative noise but no diffusion. We only assume a local Lipschitz condition on the non-linearities together with a certain physiologically reasonable monotonicity to derive crucial $L^\infty$-bounds for the solution. These play an essential role in both the proof of existence and uniqueness of solutions as well as the error analysis of the finite difference approximation in space. We derive explicit error estimates, in particular, a pathwise convergence rate of $\sqrt {1/n}-$ and a strong convergence rate of $1/n$ in special cases. As applications, the Hodgkin-Huxley and FitzHugh-Nagumo systems with noise are considered.References
- A. Andersson and S. Larsson, Weak Convergence for a Spatial Approximation of the Nonlinear Stochastic Heat Equation, arXiv preprint arXiv:1212.5564, 2012.
- Javier Baladron, Diego Fasoli, Olivier Faugeras, and Jonathan Touboul, Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, J. Math. Neurosci. 2 (2012), Art. 10, 50. MR 2974499, DOI 10.1186/2190-8567-2-10
- Dirk Blömker, Minoo Kamrani, and S. Mohammad Hosseini, Full discretization of the stochastic Burgers equation with correlated noise, IMA J. Numer. Anal. 33 (2013), no. 3, 825–848. MR 3081485, DOI 10.1093/imanum/drs035
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136, DOI 10.1017/CBO9780511666223
- G. Bard Ermentrout and David H. Terman, Mathematical foundations of neuroscience, Interdisciplinary Applied Mathematics, vol. 35, Springer, New York, 2010. MR 2674516, DOI 10.1007/978-0-387-87708-2
- R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1 (1961), 445–466.
- R. FitzHugh, Mathematical Models of Excitation and Propagation in Nerve, In Biological Engineering, McGraw-Hill, New York, 1969.
- Benjamin Gess, Strong solutions for stochastic partial differential equations of gradient type, J. Funct. Anal. 263 (2012), no. 8, 2355–2383. MR 2964686, DOI 10.1016/j.jfa.2012.07.001
- Joshua H. Goldwyn and Eric Shea-Brown, The what and where of adding channel noise to the Hodgkin-Huxley equations, PLoS Comput. Biol. 7 (2011), no. 11, e1002247, 9. MR 2865202, DOI 10.1371/journal.pcbi.1002247
- István Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal. 11 (1999), no. 1, 1–37. MR 1699161, DOI 10.1023/A:1008699504438
- István Gyöngy and Annie Millet, On discretization schemes for stochastic evolution equations, Potential Anal. 23 (2005), no. 2, 99–134. MR 2139212, DOI 10.1007/s11118-004-5393-6
- István Gyöngy and Annie Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal. 30 (2009), no. 1, 29–64. MR 2465711, DOI 10.1007/s11118-008-9105-5
- Erika Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math. 147 (2002), no. 2, 485–516. MR 1933610, DOI 10.1016/S0377-0427(02)00483-1
- A. L. Hodgkin and A. F. Huxley, A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve, J. Physiol. 117 (1952), 500–544.
- Tuomas P. Hytönen and Mark C. Veraar, On Besov regularity of Brownian motions in infinite dimensions, Probab. Math. Statist. 28 (2008), no. 1, 143–162. MR 2445509
- Arnulf Jentzen, Pathwise numerical approximation of SPDEs with additive noise under non-global Lipschitz coefficients, Potential Anal. 31 (2009), no. 4, 375–404. MR 2551596, DOI 10.1007/s11118-009-9139-3
- A. Jentzen and P. E. Kloeden, The numerical approximation of stochastic partial differential equations, Milan J. Math. 77 (2009), 205–244. MR 2578878, DOI 10.1007/s00032-009-0100-0
- P. E. Kloeden and A. Neuenkirch, The pathwise convergence of approximation schemes for stochastic differential equations, LMS J. Comput. Math. 10 (2007), 235–253. MR 2320830, DOI 10.1112/S1461157000001388
- Raphael Kruse, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal. 34 (2014), no. 1, 217–251. MR 3168284, DOI 10.1093/imanum/drs055
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Commun. Math. Sci. 1 (2003), no. 2, 361–375. MR 1980481
- Wei Liu and Michael Röckner, SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal. 259 (2010), no. 11, 2902–2922. MR 2719279, DOI 10.1016/j.jfa.2010.05.012
- W. Liu and M. Röckner, Local/Global Existence and Uniqueness of Solutions for SPDE with Generalized Coercivity Condition, Arxiv preprint arXiv:1202.0019, 2012.
- Gabriel J. Lord and Jacques Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal. 24 (2004), no. 4, 587–604. MR 2094572, DOI 10.1093/imanum/24.4.587
- Michael Mascagni, An initial-boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math. 42 (1989), no. 2, 213–227. MR 978705, DOI 10.1002/cpa.3160420206
- Roger Pettersson and Mikael Signahl, Numerical approximation for a white noise driven SPDE with locally bounded drift, Potential Anal. 22 (2005), no. 4, 375–393. MR 2135265, DOI 10.1007/s11118-004-1329-4
- Claudia Prévôt and Michael Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR 2329435
- Martin Sauer and Wilhelm Stannat, Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition, Math. Comp. 84 (2015), no. 292, 743–766. MR 3290962, DOI 10.1090/S0025-5718-2014-02873-1
- Tony Shardlow, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim. 20 (1999), no. 1-2, 121–145. MR 1683281, DOI 10.1080/01630569908816884
Bibliographic Information
- Martin Sauer
- Affiliation: Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany
- MR Author ID: 1016033
- Email: sauer@math.tu-berlin.de
- Wilhelm Stannat
- Affiliation: Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany and Bernstein Center for Computational Neuroscience, Philippstr. 13, D-10115 Berlin, Germany
- MR Author ID: 357144
- Email: stannat@math.tu-berlin.de
- Received by editor(s): February 19, 2014
- Received by editor(s) in revised form: April 13, 2015
- Published electronically: January 8, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 2457-2481
- MSC (2010): Primary 60H15, 60H35; Secondary 35R60, 65C30, 92C20
- DOI: https://doi.org/10.1090/mcom/3068
- MathSciNet review: 3511288