Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs
HTML articles powered by AMS MathViewer
- by Alexandre Ern and Friedhelm Schieweck;
- Math. Comp. 85 (2016), 2099-2129
- DOI: https://doi.org/10.1090/mcom/3073
- Published electronically: January 11, 2016
- PDF | Request permission
Abstract:
We analyze the discontinuous Galerkin method in time combined with a finite element method with symmetric stabilization in space to approximate evolution problems with a linear, first-order differential operator. A unified analysis is presented for space discretization, including the discontinuous Galerkin method and $H^1$-conforming finite elements with interior penalty on gradient jumps. Our main results are error estimates in various norms for smooth solutions. Two key ingredients are the post-processing of the fully discrete solution by lifting its jumps in time and a new time-interpolate of the exact solution. We first analyze the $L^\infty (L^2)$ (at discrete time nodes) and $L^2(L^2)$ errors and derive a superconvergent bound of order $(\tau ^{k+2}+h^{r+1/2})$ for static meshes for $k\ge 1$. Here, $\tau$ is the time step, $k$ the polynomial order in time, $h$ the size of the space mesh, and $r$ the polynomial order in space. For the case of dynamically changing meshes, we derive a novel bound on the resulting projection error. Finally, we prove new optimal bounds on static meshes for the error in the time-derivative and in the discrete graph norm.References
- N. Ahmed, G. Matthies, L. Tobiska, and H. Xie, Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 21-22, 1747–1756. MR 2787534, DOI 10.1016/j.cma.2011.02.003
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4-6, 853–866. MR 2278180, DOI 10.1016/j.cma.2006.07.011
- Andreas Brenner, Eberhard Bänsch, and Markus Bause, A priori error analysis for finite element approximations of the Stokes problem on dynamic meshes, IMA J. Numer. Anal. 34 (2014), no. 1, 123–146. MR 3168281, DOI 10.1093/imanum/drt001
- F. Brezzi, L. D. Marini, and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14 (2004), no. 12, 1893–1903. MR 2108234, DOI 10.1142/S0218202504003866
- Erik Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), no. 5, 2012–2033. MR 2192329, DOI 10.1137/S0036142903437374
- Erik Burman and Alexandre Ern, A continuous finite element method with face penalty to approximate Friedrichs’ systems, M2AN Math. Model. Numer. Anal. 41 (2007), no. 1, 55–76. MR 2323690, DOI 10.1051/m2an:2007007
- Erik Burman, Alexandre Ern, and Miguel A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019–2042. MR 2740540, DOI 10.1137/090757940
- Erik Burman and Peter Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 15-16, 1437–1453. MR 2068903, DOI 10.1016/j.cma.2003.12.032
- Jan Česenek and Miloslav Feistauer, Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion, SIAM J. Numer. Anal. 50 (2012), no. 3, 1181–1206. MR 2970739, DOI 10.1137/110828903
- Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545–581. MR 1010597, DOI 10.1090/S0025-5718-1990-1010597-0
- Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys. 84 (1989), no. 1, 90–113. MR 1015355, DOI 10.1016/0021-9991(89)90183-6
- Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411–435. MR 983311, DOI 10.1090/S0025-5718-1989-0983311-4
- Ramon Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 13-14, 1579–1599. MR 1807473, DOI 10.1016/S0045-7825(00)00254-1
- Ramon Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 39-40, 4295–4321. MR 1925888, DOI 10.1016/S0045-7825(02)00337-7
- Daniele Antonio Di Pietro and Alexandre Ern, Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148, DOI 10.1007/978-3-642-22980-0
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in $L_\infty L_2$ and $L_\infty L_\infty$, SIAM J. Numer. Anal. 32 (1995), no. 3, 706–740. MR 1335652, DOI 10.1137/0732033
- Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138, DOI 10.1007/978-1-4757-4355-5
- A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory, SIAM J. Numer. Anal. 44 (2006), no. 2, 753–778. MR 2218968, DOI 10.1137/050624133
- Miloslav Feistauer, Václav Kučera, Karel Najzar, and Jaroslava Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math. 117 (2011), no. 2, 251–288. MR 2754851, DOI 10.1007/s00211-010-0348-x
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306
- F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, Optimal grading of the Newest Vertex Bisection and H1-stability of the L2-projection, Tech. Report 2014-015, University of Stuttgart, 2014.
- Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293–1316. MR 1736900, DOI 10.1051/m2an:1999145
- J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators, IMA J. Numer. Anal. 21 (2001), no. 1, 165–197. MR 1812271, DOI 10.1093/imanum/21.1.165
- Marlis Hochbruck and Tomislav Pažur, Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations, SIAM J. Numer. Anal. 53 (2015), no. 1, 485–507. MR 3313827, DOI 10.1137/130944114
- S. Hussain, F. Schieweck, and S. Turek, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, J. Numer. Math. 19 (2011), no. 1, 41–61. MR 2805871, DOI 10.1515/JNUM.2011.003
- S. Hussain, F. Schieweck, and S. Turek, A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations, Open Numer. Methods J. 4 (2012), 35–45. MR 3005359, DOI 10.2174/1876389801204010035
- S. Hussain, F. Schieweck, and S. Turek, An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow, Internat. J. Numer. Methods Fluids 73 (2013), no. 11, 927–952. MR 3129187, DOI 10.1002/fld.3831
- J. Jaffré, C. Johnson, and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Math. Models Methods Appl. Sci. 5 (1995), no. 3, 367–386. MR 1330139, DOI 10.1142/S021820259500022X
- C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1–26. MR 815828, DOI 10.1090/S0025-5718-1986-0815828-4
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York-London, 1974, pp. 89–123. MR 658142
- Dmitriy Leykekhman and Boris Vexler, Optimal a priori error estimates of parabolic optimal control problems with pointwise control, SIAM J. Numer. Anal. 51 (2013), no. 5, 2797–2821. MR 3116646, DOI 10.1137/120885772
- G. Matthies and F. Schieweck, Higher order variational time discretizations for nonlinear systems of ordinary differential equations, Preprint 23/2011, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik, 2011, http://www-ian.math. uni-magdeburg.de/home/schieweck
- Thomas Richter, Andreas Springer, and Boris Vexler, Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems, Numer. Math. 124 (2013), no. 1, 151–182. MR 3041733, DOI 10.1007/s00211-012-0511-7
- Hans-Görg Roos, Martin Stynes, and Lutz Tobiska, Robust numerical methods for singularly perturbed differential equations, 2nd ed., Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 2008. Convection-diffusion-reaction and flow problems. MR 2454024
- D. Schötzau and C. Schwab, An $hp$ a priori error analysis of the DG time-stepping method for initial value problems, Calcolo 37 (2000), no. 4, 207–232. MR 1812787, DOI 10.1007/s100920070002
- Andreas Springer and Boris Vexler, Third order convergent time discretization for parabolic optimal control problems with control constraints, Comput. Optim. Appl. 57 (2014), no. 1, 205–240. MR 3146505, DOI 10.1007/s10589-013-9580-5
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- J. J. W. van der Vegt and S. Rhebergen, $hp$-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, J. Comput. Phys. 231 (2012), no. 22, 7537–7563. MR 2972847, DOI 10.1016/j.jcp.2012.05.038
- J. J. W. van der Vegt and S. Rhebergen, HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II: Optimization of the Runge-Kutta smoother, J. Comput. Phys. 231 (2012), no. 22, 7564–7583. MR 2972848, DOI 10.1016/j.jcp.2012.05.037
- J. J. W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation, J. Comput. Phys. 182 (2002), no. 2, 546–585. MR 1941852
- T. Werder, K. Gerdes, D. Schötzau, and C. Schwab, $hp$-discontinuous Galerkin time stepping for parabolic problems, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 49-50, 6685–6708. MR 1863353, DOI 10.1016/S0045-7825(01)00258-4
- Daoqi Yang, Improved error estimation of dynamic finite element methods for second-order parabolic equations, J. Comput. Appl. Math. 126 (2000), no. 1-2, 319–338. MR 1806763, DOI 10.1016/S0377-0427(99)00362-3
- K\B{o}saku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR 1336382, DOI 10.1007/978-3-642-61859-8
- Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2, 641–666. MR 2084230, DOI 10.1137/S0036142902404182
- Qiang Zhang and Chi-Wang Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal. 48 (2010), no. 3, 1038–1063. MR 2669400, DOI 10.1137/090771363
Bibliographic Information
- Alexandre Ern
- Affiliation: Universite Paris-Est, CERMICS (ENPC), 77455 Marne la Vallee Cedex 2, France
- MR Author ID: 349433
- Email: ern@cermics.enpc.fr
- Friedhelm Schieweck
- Affiliation: Institut für Analysis und Numerik, Otto–von–Guericke–Universität Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
- MR Author ID: 155960
- Email: schiewec@ovgu.de
- Received by editor(s): February 18, 2014
- Received by editor(s) in revised form: April 14, 2015
- Published electronically: January 11, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 2099-2129
- MSC (2010): Primary 65M12, 65M60; Secondary 65J10
- DOI: https://doi.org/10.1090/mcom/3073
- MathSciNet review: 3511276