Discrete extension operators for mixed finite element spaces on locally refined meshes
HTML articles powered by AMS MathViewer
- by Mark Ainsworth, Johnny Guzmán and Francisco-Javier Sayas;
- Math. Comp. 85 (2016), 2639-2650
- DOI: https://doi.org/10.1090/mcom/3074
- Published electronically: January 14, 2016
- PDF | Request permission
Abstract:
The existence of uniformly bounded discrete extension operators is established for conforming Raviart-Thomas and Nédelec discretizations of $H(div)$ and $H(curl)$ on locally refined partitions of a polyhedral domain into tetrahedra.References
- Ana Alonso and Alberto Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp. 68 (1999), no. 226, 607–631. MR 1609607, DOI 10.1090/S0025-5718-99-01013-3
- Mark Ainsworth, William McLean, and Thanh Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling, SIAM J. Numer. Anal. 36 (1999), no. 6, 1901–1932. MR 1712149, DOI 10.1137/S0036142997330809
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in $H(\textrm {div})$ and $H(\textrm {curl})$, Numer. Math. 85 (2000), no. 2, 197–217. MR 1754719, DOI 10.1007/PL00005386
- Ivo Babuška and Gabriel N. Gatica, On the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differential Equations 19 (2003), no. 2, 192–210. MR 1958060, DOI 10.1002/num.10040
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci. 24 (2001), no. 1, 9–30. MR 1809491, DOI 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2
- A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci. 24 (2001), no. 1, 31–48. MR 1809492, DOI 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2
- A. Buffa, M. Costabel, and D. Sheen, On traces for $\textbf {H}(\textbf {curl},\Omega )$ in Lipschitz domains, J. Math. Anal. Appl. 276 (2002), no. 2, 845–867. MR 1944792, DOI 10.1016/S0022-247X(02)00455-9
- Franco Brezzi, Jim Douglas Jr., Ricardo Durán, and Michel Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), no. 2, 237–250. MR 890035, DOI 10.1007/BF01396752
- Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813–829. MR 2373181, DOI 10.1090/S0025-5718-07-02081-9
- Monique Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory 15 (1992), no. 2, 227–261. MR 1147281, DOI 10.1007/BF01204238
- Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl, Polynomial extension operators. I, SIAM J. Numer. Anal. 46 (2008), no. 6, 3006–3031. MR 2439500, DOI 10.1137/070698786
- Víctor Domínguez and Francisco-Javier Sayas, Stability of discrete liftings, C. R. Math. Acad. Sci. Paris 337 (2003), no. 12, 805–808 (English, with English and French summaries). MR 2033124, DOI 10.1016/j.crma.2003.10.025
- Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comp. 80 (2011), no. 276, 1911–1948. MR 2813344, DOI 10.1090/S0025-5718-2011-02466-X
- Ralf Hiptmair and Shipeng Mao, Stable multilevel splittings of boundary edge element spaces, BIT 52 (2012), no. 3, 661–685. MR 2965296, DOI 10.1007/s10543-012-0369-1
- Ralf Hiptmair, Carlos Jerez-Hanckes, and Shipeng Mao, Extension by zero in discrete trace spaces: inverse estimates, Math. Comp. 84 (2015), no. 296, 2589–2615. MR 3378840, DOI 10.1090/mcom/2955
- Antonio Márquez, Salim Meddahi, and Francisco-Javier Sayas, Strong coupling of finite element methods for the Stokes-Darcy problem, IMA J. Numer. Anal. 35 (2015), no. 2, 969–988. MR 3335232, DOI 10.1093/imanum/dru023
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- J.-C. Nédélec, A new family of mixed finite elements in $\textbf {R}^3$, Numer. Math. 50 (1986), no. 1, 57–81. MR 864305, DOI 10.1007/BF01389668
- Francisco Javier Sayas, Infimum-supremum, Bol. Soc. Esp. Mat. Apl. SeMA 41 (2007), 19–40. MR 2388171
- Joachim Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008), no. 262, 633–649. MR 2373173, DOI 10.1090/S0025-5718-07-02030-3
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Jinchao Xu and Ludmil Zikatanov, Some observations on Babuška and Brezzi theories, Numer. Math. 94 (2003), no. 1, 195–202. MR 1971217, DOI 10.1007/s002110100308
- O. B. Widlund, An Extension Theorem for Finite Element Spaces with Three Applications, Proceedings of a GAMM Seminar on Numerical Techniques in Continuum Mechanics, held in Kiel, Germany, January 17-19, 1986 (Wolfgang Hackbusch and Kristian Witsch, eds.), Friedr. Vieweg and Sohn, Braunschweig/Wiesbaden, 1987, pp. 110-122.
Bibliographic Information
- Mark Ainsworth
- Affiliation: Divison of Applied Mathematics, Brown University, Providence, Rhode Island 02912
- MR Author ID: 261514
- Email: mark_ainsworth@brown.edu
- Johnny Guzmán
- Affiliation: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
- MR Author ID: 775211
- Email: johnny_guzman@brown.edu
- Francisco-Javier Sayas
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
- MR Author ID: 621885
- Email: fjsayas@udel.edu
- Received by editor(s): June 18, 2014
- Received by editor(s) in revised form: March 2, 2015, and April 20, 2015
- Published electronically: January 14, 2016
- Additional Notes: Partial support for the first author under AFOSR contract FA9550-12-1-0399 is gratefully acknowledged
The third author was partially funded by NSF grant DMS 1216356 - © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 2639-2650
- MSC (2010): Primary 76M10, 65N30, 65N12
- DOI: https://doi.org/10.1090/mcom/3074
- MathSciNet review: 3522965