Numerical computations concerning the GRH
HTML articles powered by AMS MathViewer
- by David J. Platt;
- Math. Comp. 85 (2016), 3009-3027
- DOI: https://doi.org/10.1090/mcom/3077
- Published electronically: January 15, 2016
- PDF | Request permission
Abstract:
We describe two new algorithms for the efficient and rigorous computation of Dirichlet L-functions and their use to verify the Generalised Riemann Hypothesis for all such L-functions associated with primitive characters of modulus $q\leq 400 000$. We check, to height, $\textrm {max}\left (\frac {10^8}{q},\frac {A\cdot 10^7}{q}+200\right )$ with $A=7.5$ in the case of even characters and $A=3.75$ for odd characters. In addition we confirm that no Dirichlet L-function with a modulus $q\leq 2 000 000$ vanishes at its central point.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- L. Bluestein, A linear filtering approach to the computation of discrete Fourier transform, IEEE Transactions on Audio and Electroacoustics, 18(4):451–455, 1970.
- Andrew R. Booker, Artin’s conjecture, Turing’s method, and the Riemann hypothesis, Experiment. Math. 15 (2006), no. 4, 385–407. MR 2293591, DOI 10.1080/10586458.2006.10128976
- William L. Briggs and Van Emden Henson, The DFT, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. An owner’s manual for the discrete Fourier transform. MR 1322049
- J. L. Brown Jr., On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem, J. Math. Anal. Appl. 18 (1967), 75–84. MR 204952, DOI 10.1016/0022-247X(67)90183-7
- X. Gourdon, The $10^{13}$ First Zeros of the Riemann Zeta Function, and Zeros Computation at Very Large Height, http://numbers.computation.free.fr/Constants/Miscellaneous/ zetazeros1e13-1e24.pdf, 2010.
- H.A. Helfgott, Minor arcs for Goldbach’s problem, arXiv preprint arXiv:1205.5252, 2012.
- H.A. Helfgott, Major arcs for Goldbach’s problem, arXiv preprint arXiv:1305.2897, 2013.
- IEEE, IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985., 1985.
- B. Lambov, Reliable Implementation of Real Number Algorithms: Theory and Practice, chapter Interval Arithmetic Using SSE-2, Lecture Notes in Computer Science. Springer, 2008.
- Ramon E. Moore, The automatic analysis and control of error in digital computation based on the use of interval numbers, Error in Digital Computation, Vol. 1 (Proc. Advanced Sem. Conducted by Math. Res. Center, U.S. Army, Univ. Wisconsin, Madison, Wis., 1964) Wiley, New York-London-Sydney, 1965, pp. 61–130. MR 176614
- Ramon E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966. MR 231516
- J.M. Muller, CRlibm. http://lipforge.ens-lyon.fr/www/crlibm/, 2010.
- Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959/60), 192–204. MR 117200, DOI 10.1007/BF01162949
- N. Revol and F. Rouillier, A library for arbitrary precision interval arithmetic, In 10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, 2002.
- Robert Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), no. 203, 415–440, S17–S23. MR 1195435, DOI 10.1090/S0025-5718-1993-1195435-0
- Timothy Trudgian, Improvements to Turing’s method, Math. Comp. 80 (2011), no. 276, 2259–2279. MR 2813359, DOI 10.1090/S0025-5718-2011-02470-1
- A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. (3) 3 (1953), 99–117. MR 55785, DOI 10.1112/plms/s3-3.1.99
- James S. Walker, Fast Fourier transforms, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. With 1 IBM-PC floppy disk (5.25 inch; DD). MR 1169681
Bibliographic Information
- David J. Platt
- Affiliation: Heilbronn Institute for Mathematical Research, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom
- MR Author ID: 1045993
- Email: dave.platt@bris.ac.uk
- Received by editor(s): February 8, 2014
- Received by editor(s) in revised form: February 20, 2015, and May 11, 2015
- Published electronically: January 15, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 3009-3027
- MSC (2010): Primary 11M26, 11M06; Secondary 11P32
- DOI: https://doi.org/10.1090/mcom/3077
- MathSciNet review: 3522979