Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation
HTML articles powered by AMS MathViewer
- by C. Bauzet, J. Charrier and T. Gallouët;
- Math. Comp. 85 (2016), 2777-2813
- DOI: https://doi.org/10.1090/mcom/3084
- Published electronically: February 24, 2016
- PDF | Request permission
Abstract:
Here, we study explicit flux-splitting finite volume discretizations of multi-dimensional nonlinear scalar conservation laws perturbed by a multiplicative noise with a given initial data in $L^{2}(\mathbb {R}^d)$. Under a stability condition on the time step, we prove the convergence of the finite volume approximation towards the unique stochastic entropy solution of the equation.References
- Erik J. Balder, Lectures on Young measure theory and its applications in economics, Rend. Istit. Mat. Univ. Trieste 31 (2000), no. suppl. 1, 1–69. Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1997). MR 1798830
- Caroline Bauzet, On a time-splitting method for a scalar conservation law with a multiplicative stochastic perturbation and numerical experiments, J. Evol. Equ. 14 (2014), no. 2, 333–356. MR 3207617, DOI 10.1007/s00028-013-0215-1
- Caroline Bauzet, Guy Vallet, and Petra Wittbold, The Cauchy problem for conservation laws with a multiplicative stochastic perturbation, J. Hyperbolic Differ. Equ. 9 (2012), no. 4, 661–709. MR 3021756, DOI 10.1142/S0219891612500221
- Caroline Bauzet, Guy Vallet, and Petra Wittbold, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation, J. Funct. Anal. 266 (2014), no. 4, 2503–2545. MR 3150169, DOI 10.1016/j.jfa.2013.06.022
- Gui-Qiang Chen, Qian Ding, and Kenneth H. Karlsen, On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal. 204 (2012), no. 3, 707–743. MR 2917120, DOI 10.1007/s00205-011-0489-9
- S. Champier, T. Gallouët, and R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh, Numer. Math. 66 (1993), no. 2, 139–157. MR 1245008, DOI 10.1007/BF01385691
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136, DOI 10.1017/CBO9780511666223
- A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing, J. Funct. Anal. 259 (2010), no. 4, 1014–1042. MR 2652180, DOI 10.1016/j.jfa.2010.02.016
- R. Eymard, T. Gallouët, and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B 16 (1995), no. 1, 1–14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995), no. 1, 119. MR 1338923
- Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. MR 1804748, DOI 10.1016/S1570-8659(00)07005-8
- Jin Feng and David Nualart, Stochastic scalar conservation laws, J. Funct. Anal. 255 (2008), no. 2, 313–373. MR 2419964, DOI 10.1016/j.jfa.2008.02.004
- Martina Hofmanová, A Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 4, 1500–1528 (English, with English and French summaries). MR 3414456, DOI 10.1214/14-AIHP610
- H. Holden and N. H. Risebro, A stochastic approach to conservation laws, Third International Conference on Hyperbolic Problems, Vol. I, II (Uppsala, 1990) Studentlitteratur, Lund, 1991, pp. 575–587. MR 1109309
- Jong Uhn Kim, On the stochastic porous medium equation, J. Differential Equations 220 (2006), no. 1, 163–194. MR 2182084, DOI 10.1016/j.jde.2005.02.006
- I. Kröker and C. Rohde, Finite volume schemes for hyperbolic balance laws with multiplicative noise, Appl. Numer. Math. 62 (2012), no. 4, 441–456. MR 2899255, DOI 10.1016/j.apnum.2011.01.011
- Ilja Kröker, Finite volume methods for conservation laws with noise, Finite volumes for complex applications V, ISTE, London, 2008, pp. 527–534. MR 2451449, DOI 10.1007/s11336-008-9073-0
- E. Yu. Panov, On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996), no. 2, 107–148 (Russian, with Russian summary); English transl., Izv. Math. 60 (1996), no. 2, 335–377. MR 1399420, DOI 10.1070/IM1996v060n02ABEH000073
- G. Vallet, Stochastic perturbation of nonlinear degenerate parabolic problems, Differential Integral Equations 21 (2008), no. 11-12, 1055–1082. MR 2482497
Bibliographic Information
- C. Bauzet
- Affiliation: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille France
- Email: caroline.bauzet@univ-amu.fr
- J. Charrier
- Affiliation: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille France
- MR Author ID: 968621
- Email: julia.charrier@univ-amu.fr
- T. Gallouët
- Affiliation: Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille France
- Email: thierry.gallouet@univ-amu.fr
- Received by editor(s): March 12, 2014
- Received by editor(s) in revised form: December 13, 2014
- Published electronically: February 24, 2016
- Additional Notes: This work has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR)
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 2777-2813
- MSC (2010): Primary 35L60, 60H15, 65M08, 65M12
- DOI: https://doi.org/10.1090/mcom/3084
- MathSciNet review: 3522970