Localized orthogonal decomposition method for the wave equation with a continuum of scales
HTML articles powered by AMS MathViewer
- by Assyr Abdulle and Patrick Henning;
- Math. Comp. 86 (2017), 549-587
- DOI: https://doi.org/10.1090/mcom/3114
- Published electronically: May 3, 2016
- PDF | Request permission
Abstract:
This paper is devoted to numerical approximations for the wave equation with a multiscale character. Our approach is formulated in the framework of the Localized Orthogonal Decomposition (LOD) interpreted as a numerical homogenization with an $L^2$-projection. We derive explicit convergence rates of the method in the $L^{\infty }(L^2)$-, $W^{1,\infty }(L^2)$- and $L^{\infty }(H^1)$-norms without any assumptions on higher order space regularity or scale-separation. The order of the convergence rates depends on further graded assumptions on the initial data. We also prove the convergence of the method in the framework of G-convergence without any structural assumptions on the initial data, i.e. without assuming that it is well-prepared. This rigorously justifies the method. Finally, the performance of the method is demonstrated in numerical experiments.References
- Assyr Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale Model. Simul. 4 (2005), no. 2, 447–459. MR 2162863, DOI 10.1137/040607137
- Assyr Abdulle, Analysis of a heterogeneous multiscale FEM for problems in elasticity, Math. Models Methods Appl. Sci. 16 (2006), no. 4, 615–635. MR 2218216, DOI 10.1142/S0218202506001285
- Assyr Abdulle, A priori and a posteriori error analysis for numerical homogenization: a unified framework, Multiscale problems, Ser. Contemp. Appl. Math. CAM, vol. 16, Higher Ed. Press, Beijing, 2011, pp. 280–305. MR 2952740, DOI 10.1142/9789814366892_{0}009
- Assyr Abdulle and Marcus J. Grote, Finite element heterogeneous multiscale method for the wave equation, Multiscale Model. Simul. 9 (2011), no. 2, 766–792. MR 2818419, DOI 10.1137/100800488
- Assyr Abdulle, Marcus J. Grote, and Christian Stohrer, FE heterogeneous multiscale method for long-time wave propagation, C. R. Math. Acad. Sci. Paris 351 (2013), no. 11-12, 495–499 (English, with English and French summaries). MR 3090137, DOI 10.1016/j.crma.2013.06.002
- Assyr Abdulle, Marcus J. Grote, and Christian Stohrer, Finite element heterogeneous multiscale method for the wave equation: long-time effects, Multiscale Model. Simul. 12 (2014), no. 3, 1230–1257. MR 3256789, DOI 10.1137/13094195X
- Grégoire Allaire and Rafael Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM Control Optim. Calc. Var. 13 (2007), no. 4, 735–749. MR 2351401, DOI 10.1051/cocv:2007030
- Garth A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), no. 4, 564–576. MR 423836, DOI 10.1137/0713048
- Randolph E. Bank and Todd Dupont, An optimal order process for solving finite element equations, Math. Comp. 36 (1981), no. 153, 35–51. MR 595040, DOI 10.1090/S0025-5718-1981-0595040-2
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- S. Brahim-Otsmane, G. A. Francfort, and F. Murat, Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9) 71 (1992), no. 3, 197–231. MR 1172450
- Carsten Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1187–1202. MR 1736895, DOI 10.1051/m2an:1999140
- Doina Cioranescu and Patrizia Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR 1765047
- Weinan E and Bjorn Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003), no. 1, 87–132. MR 1979846
- Daniel Elfverson, Emmanuil H. Georgoulis, Axel Målqvist, and Daniel Peterseim, Convergence of a discontinuous Galerkin multiscale method, SIAM J. Numer. Anal. 51 (2013), no. 6, 3351–3372. MR 3141754, DOI 10.1137/120900113
- Björn Engquist, Henrik Holst, and Olof Runborg, Multi-scale methods for wave propagation in heterogeneous media, Commun. Math. Sci. 9 (2011), no. 1, 33–56. MR 2836835
- Björn Engquist, Henrik Holst, and Olof Runborg, Multiscale methods for wave propagation in heterogeneous media over long time, Numerical analysis of multiscale computations, Lect. Notes Comput. Sci. Eng., vol. 82, Springer, Heidelberg, 2012, pp. 167–186. MR 3075796, DOI 10.1007/978-3-642-21943-6_{8}
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Patrick Henning and Axel Målqvist, Localized orthogonal decomposition techniques for boundary value problems, SIAM J. Sci. Comput. 36 (2014), no. 4, A1609–A1634. MR 3240855, DOI 10.1137/130933198
- Patrick Henning, Axel Målqvist, and Daniel Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 5, 1331–1349. MR 3264356, DOI 10.1051/m2an/2013141
- Patrick Henning and Mario Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains, Numer. Math. 113 (2009), no. 4, 601–629. MR 2545495, DOI 10.1007/s00211-009-0244-4
- Patrick Henning and Daniel Peterseim, Oversampling for the multiscale finite element method, Multiscale Model. Simul. 11 (2013), no. 4, 1149–1175. MR 3123820, DOI 10.1137/120900332
- Thomas J. R. Hughes, Gonzalo R. Feijóo, Luca Mazzei, and Jean-Baptiste Quincy, The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg. 166 (1998), no. 1-2, 3–24. MR 1660141, DOI 10.1016/S0045-7825(98)00079-6
- Lijian Jiang and Yalchin Efendiev, A priori estimates for two multiscale finite element methods using multiple global fields to wave equations, Numer. Methods Partial Differential Equations 28 (2012), no. 6, 1869–1892. MR 2981874, DOI 10.1002/num.20706
- Lijian Jiang, Yalchin Efendiev, and Victor Ginting, Analysis of global multiscale finite element methods for wave equations with continuum spatial scales, Appl. Numer. Math. 60 (2010), no. 8, 862–876. MR 2647439, DOI 10.1016/j.apnum.2010.04.011
- Oksana Korostyshevskaya and Susan E. Minkoff, A matrix analysis of operator-based upscaling for the wave equation, SIAM J. Numer. Anal. 44 (2006), no. 2, 586–612. MR 2218961, DOI 10.1137/050625369
- Agnes Lamacz, Dispersive effective models for waves in heterogeneous media, Math. Models Methods Appl. Sci. 21 (2011), no. 9, 1871–1899. MR 2843023, DOI 10.1142/S021820251100557X
- Mats G. Larson and Axel Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 21-24, 2313–2324. MR 2319044, DOI 10.1016/j.cma.2006.08.019
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Axel Målqvist, Multiscale methods for elliptic problems, Multiscale Model. Simul. 9 (2011), no. 3, 1064–1086. MR 2831590, DOI 10.1137/090775592
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- Axel Målqvist and Daniel Peterseim, Computation of eigenvalues by numerical upscaling, Numer. Math. 130 (2015), no. 2, 337–361. MR 3343928, DOI 10.1007/s00211-014-0665-6
- Houman Owhadi and Lei Zhang, Numerical homogenization of the acoustic wave equations with a continuum of scales, Comput. Methods Appl. Mech. Engrg. 198 (2008), no. 3-4, 397–406. MR 2479273, DOI 10.1016/j.cma.2008.08.012
- Houman Owhadi and Lei Zhang, Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast, Multiscale Model. Simul. 9 (2011), no. 4, 1373–1398. MR 2861243, DOI 10.1137/100813968
- S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 571–597; errata: 22 (1968), 673 (Italian). MR 240443
- Luc Tartar, Cours Peccot, Collège de France, 1977.
- Tetyana Vdovina, Susan E. Minkoff, and Oksana Korostyshevskaya, Operator upscaling for the acoustic wave equation, Multiscale Model. Simul. 4 (2005), no. 4, 1305–1338. MR 2203854, DOI 10.1137/050622146
Bibliographic Information
- Assyr Abdulle
- Affiliation: Section de Mathématiques, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
- Email: Assyr.Abdulle@epfl.ch
- Patrick Henning
- Affiliation: Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms- Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
- Address at time of publication: Division of Numerical Analysis, KTH Royal Institute of Technology, Lindstedtsvägen 25, S-10044 Stockholm, Sweden
- Email: pathe@kth.se
- Received by editor(s): June 24, 2014
- Received by editor(s) in revised form: May 12, 2015, September 17, 2015, and September 21, 2015
- Published electronically: May 3, 2016
- Additional Notes: This work was partially supported by the Swiss National Foundation, Grant No. $200021\_134716/1$, and by the Deutsche Forschungsgemeinschaft, DFG-Grant No. OH 98/6-1.
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 549-587
- MSC (2010): Primary 35L05, 65M60, 65N30, 74Q10, 74Q15
- DOI: https://doi.org/10.1090/mcom/3114
- MathSciNet review: 3584540