Structure-preserving mesh coupling based on the Buffa-Christiansen complex
HTML articles powered by AMS MathViewer
- by Ossi Niemimäki, Stefan Kurz and Lauri Kettunen;
- Math. Comp. 86 (2017), 507-524
- DOI: https://doi.org/10.1090/mcom/3121
- Published electronically: May 17, 2016
- PDF | Request permission
Abstract:
The state of the art for mesh coupling at nonconforming interfaces is presented and reviewed. Mesh coupling is frequently applied to the modeling and simulation of motion in electromagnetic actuators and machines. The paper exploits Whitney elements to present the main ideas. Both interpolation- and projection-based methods are considered. In addition to accuracy and efficiency, we emphasize the question whether the schemes preserve the structure of the de Rham complex, which underlies Maxwell’s equations. As a new contribution, a structure-preserving projection method is presented, in which Lagrange multiplier spaces are chosen from the Buffa-Christiansen complex. Its performance is compared with a straightforward interpolation based on Whitney and de Rham maps, and with Galerkin projection.References
- Francesco P. Andriulli, Kristof Cools, Hakan Bağci, Femke Olyslager, Annalisa Buffa, Snorre Christiansen, and Eric Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation, IEEE Trans. Antennas and Propagation 56 (2008), no. 8, 2398–2412. MR 2444900, DOI 10.1109/TAP.2008.926788
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354. MR 2594630, DOI 10.1090/S0273-0979-10-01278-4
- F. Ben Belgacem, A. Buffa, and Y. Maday, The mortar finite element method for 3D Maxwell equations: first results, SIAM J. Numer. Anal. 39 (2001), no. 3, 880–901. MR 1860449, DOI 10.1137/S0036142999357968
- Christine Bernardi, Yvon Maday, and Francesca Rapetti, Basics and some applications of the mortar element method, GAMM-Mitt. 28 (2005), no. 2, 97–123. MR 2192477, DOI 10.1002/gamm.201490020
- Alain Bossavit, Computational electromagnetism, Electromagnetism, Academic Press, Inc., San Diego, CA, 1998. Variational formulations, complementarity, edge elements. MR 1488417
- F. Bouillault, A. Buffa, Y. Maday, and F. Rapetti, The mortar edge element method in three dimensions: application to magnetostatics, SIAM J. Sci. Comput. 24 (2003), no. 4, 1303–1327. MR 1976218, DOI 10.1137/S1064827501386006
- Annalisa Buffa and Snorre H. Christiansen, A dual finite element complex on the barycentric refinement, Math. Comp. 76 (2007), no. 260, 1743–1769. MR 2336266, DOI 10.1090/S0025-5718-07-01965-5
- Annalisa Buffa and Ralf Hiptmair, Galerkin boundary element methods for electromagnetic scattering, Topics in computational wave propagation, Lect. Notes Comput. Sci. Eng., vol. 31, Springer, Berlin, 2003, pp. 83–124. MR 2032868, DOI 10.1007/978-3-642-55483-4_{3}
- Annalisa Buffa, Yvon Maday, and Francesca Rapetti, Applications of the mortar element method to 3D electromagnetic moving structures, Computational electromagnetics (Kiel, 2001) Lect. Notes Comput. Sci. Eng., vol. 28, Springer, Berlin, 2003, pp. 35–50. MR 1986131, DOI 10.1007/978-3-642-55745-3_{4}
- A. Burtscher et al., LehrFEM – a 2D finite element toolbox., Tech. report, Seminar for Applied Mathematics, ETH Zürich, 2013.
- C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, Scientific Computation, Springer, Berlin, 2007. Evolution to complex geometries and applications to fluid dynamics. MR 2340254
- M. Clemens, S. Feigh, and T. Weiland, Geometric multigrid algorithms using the conformal Finite Integration Technique, IEEE Transactions on Magnetics 40 (2004), no. 2, 1065–1068.
- B. Flemisch, Nonmatching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics, Ph.D. thesis, Institut für angewandte Analysis und Numerische Simulation, Universität Stuttgart, 2007.
- Martin J. Gander and Caroline Japhet, Algorithm 932: PANG: software for nonmatching grid projections in 2D and 3D with linear complexity, ACM Trans. Math. Software 40 (2013), no. 1, Art. 6, 25. MR 3118745, DOI 10.1145/2513109.2513115
- K. Hollaus, D. Feldengut, J. Schöberl, M. Wabro, and D. Omeragic, Nitsche-type mortaring for Maxwell’s equations, Progress In Electromagnetics Research Symposium Proceedings (Cambridge, USA), July 2010, pp. 397–402.
- R. H. W. Hoppe, Mortar edge element methods in $\mathbf R^3$, East-West J. Numer. Math. 7 (1999), no. 3, 159–173. MR 1719615
- Qiya Hu, Shi Shu, and Jun Zou, A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell’s equations, Math. Comp. 77 (2008), no. 263, 1333–1353. MR 2398771, DOI 10.1090/S0025-5718-08-02057-7
- A. A. Journeaux, F. Bouillaut, and J. Y. Roger, Reducing the cost of mesh-to-mesh data transfer, IEEE Transactions on Magnetics 50 (2014), no. 2, 437–440.
- A. A. Journeaux, N. Nemitz, and O. Moreau, Locally conservative projection methods: benchmarking and practical implementation, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33 (2014), no. 1/2, 663–687.
- Stefan Kurz and Bernhard Auchmann, Differential forms and boundary integral equations for Maxwell-type problems, Fast boundary element methods in engineering and industrial applications, Lect. Notes Appl. Comput. Mech., vol. 63, Springer, Heidelberg, 2012, pp. 1–62. MR 3059727, DOI 10.1007/978-3-642-25670-7_{1}
- E. Lange, F. Henrotte, and K. Hameyer, Biorthogonal shape functions for nonconforming sliding interfaces in 3-D electrical machine FE models with motion, IEEE Transactions on Magnetics 48 (2012), no. 2, 855–858.
- S. Niu, S. L. Ho, W. N. Fu, and J. Zhu, A convenient mesh rotation method of finite element analysis using sub-matrix transformation approach, IEEE Transactions on Magnetics 48 (2012), no. 2, 303–306.
- F. Rapetti, A. Buffa, F. Bouillaut, and Y. Maday, Simulation of a coupled magneto-mechanical system through the sliding-mesh mortar element method, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 19 (2000), no. 2, 332–340.
- D. Rodger, H. C. Lai, and P. J. Leonard, Coupled elements for problems involving movement, IEEE Transactions on Magnetics 26 (1990), no. 2, 548–550.
- Xiaodong Shi, Y. Le Menach, J.-P. Ducreux, and F. Piriou, Comparison between the mortar element method and the polynomial interpolation method to model movement in the Finite Element Method, IEEE Transactions on Magnetics 44 (2008), no. 6, 1314–1317.
- Y. Smirnova, Calderón preconditioning for higher order boundary element method, Master’s thesis, Swiss Federal Institute of Technology, Seminar for Applied Mathematics, July 2013.
- Peter Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10 (1989), no. 1, 36–52. MR 976160, DOI 10.1137/0910004
- Barbara I. Wohlmuth, A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations, M2AN Math. Model. Numer. Anal. 36 (2002), no. 6, 995–1012 (2003). MR 1958655, DOI 10.1051/m2an:2003002
Bibliographic Information
- Ossi Niemimäki
- Affiliation: Tampere University of Technology, DEE - Electromagnetics, P.O. Box 692, 33101 Tampere, Finland
- Address at time of publication: Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 University of Helsinki, Finland
- Email: ossi.niemimaki@helsinki.fi
- Stefan Kurz
- Affiliation: Tampere University of Technology, DEE - Electromagnetics, P.O. Box 692, 33101 Tampere, Finland
- Address at time of publication: Graduate School Computational Engineering, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt, Germany
- MR Author ID: 768977
- Email: kurz@gsc.tu-darmstadt.de
- Lauri Kettunen
- Affiliation: Tampere University of Technology, DEE - Electromagnetics, P.O. Box 692, 33101 Tampere, Finland
- MR Author ID: 630615
- Email: lauri.kettunen@tut.fi
- Received by editor(s): February 27, 2015
- Received by editor(s) in revised form: August 4, 2015
- Published electronically: May 17, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 507-524
- MSC (2010): Primary 65N30, 78M10
- DOI: https://doi.org/10.1090/mcom/3121
- MathSciNet review: 3584538