## Analysis of an augmented mixed-FEM for the Navier-Stokes problem

HTML articles powered by AMS MathViewer

- by Jessika Camaño, Ricardo Oyarzúa and Giordano Tierra PDF
- Math. Comp.
**86**(2017), 589-615 Request permission

## Abstract:

In this paper we propose and analyze a new augmented mixed finite element method for the Navier-Stokes problem. Our approach is based on the introduction of a “nonlinear-pseudostress” tensor linking the pseudostress tensor with the convective term, which leads to a mixed formulation with the nonlinear-pseudostress tensor and the velocity as the main unknowns of the system. Further variables of interest, such as the fluid pressure, the fluid vorticity and the fluid velocity gradient, can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. The resulting mixed formulation is augmented by introducing Galerkin least-squares type terms arising from the constitutive and equilibrium equations of the Navier-Stokes equations and from the Dirichlet boundary condition, which are multiplied by stabilization parameters that are chosen in such a way that the resulting continuous formulation becomes well-posed. Then, the classical Banach fixed point theorem and the Lax-Milgram lemma are applied to prove well-posedness of the continuous problem. Similarly, we establish well-posedness and the corresponding Cea estimate of the associated Galerkin scheme considering any conforming finite element subspace for each unknown. In particular, the associated Galerkin scheme can be defined by employing Raviart-Thomas elements of degree $k$ for the nonlinear-pseudostress tensor and continuous piecewise polynomial elements of degree $k+1$ for the velocity, which leads to an optimal convergent scheme. In addition, we provide two iterative methods to solve the corresponding nonlinear system of equations and analyze their convergence. Finally, several numerical results illustrating the good performance of the method are provided.## References

- Mario Alvarez, Gabriel N. Gatica, and Ricardo Ruiz-Baier,
*An augmented mixed-primal finite element method for a coupled flow-transport problem*, ESAIM Math. Model. Numer. Anal.**49**(2015), no. 5, 1399–1427. MR**3423229**, DOI 10.1051/m2an/2015015 - Douglas N. Arnold, Jim Douglas Jr., and Chaitan P. Gupta,
*A family of higher order mixed finite element methods for plane elasticity*, Numer. Math.**45**(1984), no. 1, 1–22. MR**761879**, DOI 10.1007/BF01379659 - Lori Badea, Marco Discacciati, and Alfio Quarteroni,
*Numerical analysis of the Navier-Stokes/Darcy coupling*, Numer. Math.**115**(2010), no. 2, 195–227. MR**2606960**, DOI 10.1007/s00211-009-0279-6 - Franco Brezzi and Michel Fortin,
*Mixed and hybrid finite element methods*, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR**1115205**, DOI 10.1007/978-1-4612-3172-1 - Zhiqiang Cai, Charles Tong, Panayot S. Vassilevski, and Chunbo Wang,
*Mixed finite element methods for incompressible flow: stationary Stokes equations*, Numer. Methods Partial Differential Equations**26**(2010), no. 4, 957–978. MR**2642330**, DOI 10.1002/num.20467 - Zhiqiang Cai and Yanqiu Wang,
*Pseudostress-velocity formulation for incompressible Navier-Stokes equations*, Internat. J. Numer. Methods Fluids**63**(2010), no. 3, 341–356. MR**2662525**, DOI 10.1002/fld.2077 - Zhiqiang Cai, Chunbo Wang, and Shun Zhang,
*Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations*, SIAM J. Numer. Anal.**48**(2010), no. 1, 79–94. MR**2608359**, DOI 10.1137/080718413 - Zhiqiang Cai and Shun Zhang,
*Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation*, Math. Comp.**81**(2012), no. 280, 1903–1927. MR**2945142**, DOI 10.1090/S0025-5718-2012-02585-3 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - Timothy A. Davis,
*Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method*, ACM Trans. Math. Software**30**(2004), no. 2, 196–199. MR**2075981**, DOI 10.1145/992200.992206 - Vincent J. Ervin, Jason S. Howell, and Iuliana Stanculescu,
*A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem*, Comput. Methods Appl. Mech. Engrg.**197**(2008), no. 33-40, 2886–2900. MR**2427092**, DOI 10.1016/j.cma.2008.01.022 - Mohamed Farhloul, Serge Nicaise, and Luc Paquet,
*A refined mixed finite-element method for the stationary Navier-Stokes equations with mixed boundary conditions*, IMA J. Numer. Anal.**28**(2008), no. 1, 25–45. MR**2387904**, DOI 10.1093/imanum/drm005 - M. Farhloul, S. Nicaise, and L. Paquet,
*A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem*, Numer. Methods Partial Differential Equations**25**(2009), no. 4, 843–869. MR**2526985**, DOI 10.1002/num.20377 - Leonardo E. Figueroa, Gabriel N. Gatica, and Antonio Márquez,
*Augmented mixed finite element methods for the stationary Stokes equations*, SIAM J. Sci. Comput.**31**(2008/09), no. 2, 1082–1119. MR**2466149**, DOI 10.1137/080713069 - V. Girault and P.-A. Raviart,
*Finite element approximation of the Navier-Stokes equations*, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR**548867** - Gabriel N. Gatica,
*Analysis of a new augmented mixed finite element method for linear elasticity allowing $\Bbb {RT}_0$-${\Bbb P}_1$-${\Bbb P}_0$ approximations*, M2AN Math. Model. Numer. Anal.**40**(2006), no. 1, 1–28. MR**2223502**, DOI 10.1051/m2an:2006003 - Gabriel N. Gatica,
*An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions*, Electron. Trans. Numer. Anal.**26**(2007), 421–438. MR**2391229**, DOI 10.1080/00207177708922320 - Gabriel N. Gatica,
*A simple introduction to the mixed finite element method*, SpringerBriefs in Mathematics, Springer, Cham, 2014. Theory and applications. MR**3157367**, DOI 10.1007/978-3-319-03695-3 - Gabriel N. Gatica, María González, and Salim Meddahi,
*A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. I. A priori error analysis*, Comput. Methods Appl. Mech. Engrg.**193**(2004), no. 9-11, 881–892. MR**2037042**, DOI 10.1016/j.cma.2003.11.007 - Gabriel N. Gatica, Luis F. Gatica, and Antonio Márquez,
*Augmented mixed finite element methods for a vorticity-based velocity–pressure–stress formulation of the Stokes problem in 2D*, Internat. J. Numer. Methods Fluids**67**(2011), no. 4, 450–477. MR**2835711**, DOI 10.1002/fld.2362 - Gabriel N. Gatica, Antonio Márquez, Ricardo Oyarzúa, and Ramiro Rebolledo,
*Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media*, Comput. Methods Appl. Mech. Engrg.**270**(2014), 76–112. MR**3154022**, DOI 10.1016/j.cma.2013.11.017 - Gabriel N. Gatica, Antonio Márquez, and Manuel A. Sánchez,
*Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations*, Comput. Methods Appl. Mech. Engrg.**199**(2010), no. 17-20, 1064–1079. MR**2594823**, DOI 10.1016/j.cma.2009.11.024 - Gabriel N. Gatica, Antonio Márquez, and Manuel A. Sánchez,
*A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows*, Comput. Methods Appl. Mech. Engrg.**200**(2011), no. 17-20, 1619–1636. MR**2774770**, DOI 10.1016/j.cma.2011.01.010 - Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas,
*Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem*, Math. Comp.**80**(2011), no. 276, 1911–1948. MR**2813344**, DOI 10.1090/S0025-5718-2011-02466-X - Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas,
*A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow*, IMA J. Numer. Anal.**32**(2012), no. 3, 845–887. MR**2954732**, DOI 10.1093/imanum/drr020 - F. Hecht,
*New development in freefem++*, J. Numer. Math.**20**(2012), no. 3-4, 251–265. MR**3043640**, DOI 10.1515/jnum-2012-0013 - R. Hiptmair,
*Finite elements in computational electromagnetism*, Acta Numer.**11**(2002), 237–339. MR**2009375**, DOI 10.1017/S0962492902000041 - Jason S. Howell,
*Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients*, J. Comput. Appl. Math.**231**(2009), no. 2, 780–792. MR**2549742**, DOI 10.1016/j.cam.2009.05.002 - Jason S. Howell and Noel J. Walkington,
*Dual-mixed finite element methods for the Navier-Stokes equations*, ESAIM Math. Model. Numer. Anal.**47**(2013), no. 3, 789–805. MR**3056409**, DOI 10.1051/m2an/2012050 - L. V. Kantorovich and G. P. Akilov,
*Functional analysis in normed spaces*, International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Company, New York, 1964. Translated from the Russian by D. E. Brown; Edited by A. P. Robertson. MR**0213845** - L. I. G. Kovasznay,
*Laminar flow behind two-dimensional grid*, Proc. Cambridge Philos. Soc.**44**(1948), 58–62. MR**24282** - Roger Temam,
*Navier-Stokes equations. Theory and numerical analysis*, Studies in Mathematics and its Applications, Vol. 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR**0609732**

## Additional Information

**Jessika Camaño**- Affiliation: Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile – and – CI$^2$MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- MR Author ID: 962509
- Email: jecamano@ucsc.cl
**Ricardo Oyarzúa**- Affiliation: Departamento de Matemática, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile – and – CI$^2$MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: royarzua@ubiobio.cl
**Giordano Tierra**- Affiliation: Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Prague 8, 186 75, Czech Republic
- Address at time of publication: Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, Pennsylvania 19122
- Email: gtierra@karlin.mff.cuni.cz, gtierra@temple.edu
- Received by editor(s): November 19, 2014
- Received by editor(s) in revised form: July 29, 2015, and September 12, 2015
- Published electronically: June 20, 2016
- Additional Notes: This research was partially supported by CONICYT-Chile through project Inserción de Capital Humano Avanzado en la Academia 79130048; project Fondecyt 11140691, project Fondecyt 11121347, project Anillo ACT1118 (ANANUM); by DIUBB project 120808 GI/EF; and by Ministry of Education, Youth and Sports of the Czech Republic through the ERC-CZ project LL1202.
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp.
**86**(2017), 589-615 - MSC (2010): Primary 65N15, 65N30, 76D05, 76M10
- DOI: https://doi.org/10.1090/mcom/3124
- MathSciNet review: 3584541