Residual-based a posteriori error estimate for interface problems: Nonconforming linear elements
HTML articles powered by AMS MathViewer
- by Zhiqiang Cai, Cuiyu He and Shun Zhang;
- Math. Comp. 86 (2017), 617-636
- DOI: https://doi.org/10.1090/mcom/3151
- Published electronically: May 3, 2016
- PDF | Request permission
Abstract:
In this paper, we study a modified residual-based a posteriori error estimator for the nonconforming linear finite element approximation to the interface problem. The reliability of the estimator is analyzed by a new and direct approach without using the Helmholtz decomposition. It is proved that the estimator is reliable with constant independent of the jump of diffusion coefficients across the interfaces, without the assumption that the diffusion coefficient is quasi-monotone. Numerical results for one test problem with intersecting interfaces are also presented.References
- Mark Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal. 42 (2005), no. 6, 2320–2341. MR 2139395, DOI 10.1137/S0036142903425112
- Mark Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal. 45 (2007), no. 4, 1777–1798. MR 2338409, DOI 10.1137/060665993
- Roland Becker, Peter Hansbo, and Mats G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 5-6, 723–733. MR 1952357, DOI 10.1016/S0045-7825(02)00593-5
- C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579–608 (English, with English and French summaries). MR 1771781, DOI 10.1007/PL00005393
- Carsten Carstensen, Sören Bartels, and Stefan Jansche, A posteriori error estimates for nonconforming finite element methods, Numer. Math. 92 (2002), no. 2, 233–256. MR 1922920, DOI 10.1007/s002110100378
- Carsten Carstensen, Jun Hu, and Antonio Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal. 45 (2007), no. 1, 68–82. MR 2285845, DOI 10.1137/050628854
- Zhiqiang Cai, Xiu Ye, and Shun Zhang, Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM J. Numer. Anal. 49 (2011), no. 5, 1761–1787. MR 2837483, DOI 10.1137/100805133
- Zhiqiang Cai and Shun Zhang, Recovery-based error estimator for interface problems: conforming linear elements, SIAM J. Numer. Anal. 47 (2009), no. 3, 2132–2156. MR 2519597, DOI 10.1137/080717407
- Zhiqiang Cai and Shun Zhang, Flux recovery and a posteriori error estimators: conforming elements for scalar elliptic equations, SIAM J. Numer. Anal. 48 (2010), no. 2, 578–602. MR 2669997, DOI 10.1137/080742993
- Zhiqiang Cai and Shun Zhang, Recovery-based error estimators for interface problems: mixed and nonconforming finite elements, SIAM J. Numer. Anal. 48 (2010), no. 1, 30–52. MR 2608357, DOI 10.1137/080722631
- Zhiqiang Cai and Shun Zhang, Robust residual- and recovery-based a posteriori error estimators for interface problems with flux jumps, Numer. Methods Partial Differential Equations 28 (2012), no. 2, 476–491. MR 2879789, DOI 10.1002/num.20629
- Zhiqiang Cai and Shun Zhang, Robust equilibrated residual error estimator for diffusion problems: conforming elements, SIAM J. Numer. Anal. 50 (2012), no. 1, 151–170. MR 2888308, DOI 10.1137/100803857
- Enzo Dari, Ricardo Durán, and Claudio Padra, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64 (1995), no. 211, 1017–1033. MR 1284666, DOI 10.1090/S0025-5718-1995-1284666-9
- E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 4, 385–400 (English, with English and French summaries). MR 1399496, DOI 10.1051/m2an/1996300403851
- Maksymilian Dryja, Marcus V. Sarkis, and Olof B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math. 72 (1996), no. 3, 313–348. MR 1367653, DOI 10.1007/s002110050172
- Howard C. Elman, David J. Silvester, and Andrew J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. MR 2155549
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Ronald H. W. Hoppe and Barbara Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 2, 237–263 (English, with English and French summaries). MR 1382112, DOI 10.1051/m2an/1996300202371
- R. Bruce Kellogg, On the Poisson equation with intersecting interfaces, Applicable Anal. 4 (1974/75), 101–129. MR 393815, DOI 10.1080/00036817408839086
- Kwang Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp. 76 (2007), no. 257, 43–66. MR 2261011, DOI 10.1090/S0025-5718-06-01903-X
- Carlo Lovadina and Rolf Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), no. 256, 1659–1674. MR 2240629, DOI 10.1090/S0025-5718-06-01872-2
- R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), no. 4, 1394–1414. MR 2114283, DOI 10.1137/S0036142903433790
- Martin Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients, Adv. Comput. Math. 16 (2002), no. 1, 47–75. MR 1888219, DOI 10.1023/A:1014221125034
- Friedhelm Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements, M2AN Math. Model. Numer. Anal. 36 (2002), no. 3, 489–503. MR 1918941, DOI 10.1051/m2an:2002022
- Rüdiger Verfürth, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. MR 3059294, DOI 10.1093/acprof:oso/9780199679423.001.0001
- Martin Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397–438. MR 2765501, DOI 10.1007/s10915-010-9410-1
Bibliographic Information
- Zhiqiang Cai
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- MR Author ID: 235961
- Email: caiz@purdue.edu
- Cuiyu He
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
- Email: he75@purdue.edu
- Shun Zhang
- Affiliation: Department of Mathematics, City University of Hong Kong, Hong Kong
- MR Author ID: 704861
- Email: shun.zhang@cityu.edu.hk
- Received by editor(s): July 17, 2014
- Received by editor(s) in revised form: September 9, 2015
- Published electronically: May 3, 2016
- Additional Notes: This work was supported in part by the National Science Foundation under grants DMS-1217081 and DMS-1522707, the Purdue Research Foundation, and the Research Grants Council of the Hong Kong SAR, China, under the GRF Project No. 11303914, CityU 9042090.
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 617-636
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/mcom/3151
- MathSciNet review: 3584542