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COMPUTATION OF HURWITZ SPACES

AND NEW EXPLICIT POLYNOMIALS

FOR ALMOST SIMPLE GALOIS GROUPS

JOACHIM KÖNIG

Abstract. We compute the first explicit polynomials with Galois groups
G = PΓL3(4), PGL3(4), PSL3(4) and PSL5(2) over Q(t). Furthermore
we compute the first examples of totally real polynomials with Galois groups
PGL2(11), PSL3(3), M22 and Aut(M22) over Q. All these examples make use
of families of covers of the projective line ramified over four or more points,
and therefore use techniques of explicit computations of Hurwitz spaces. Sim-
ilar techniques were used previously e.g. by Malle (2000), Couveignes (1999),
Granboulan (1996) and Hallouin (2009). Unlike previous examples, however,
some of our computations show the existence of rational points on Hurwitz
spaces that would not have been obvious from theoretical arguments.

1. Introduction

In recent years, there has been a great deal of progress in explicit computation
of polynomials with prescribed Galois group. One notable area of interest is the
computation of 3-point covers of the line (Belyi maps), for which strong tools have
been developed, e.g. in [17]. Such techniques have been used to calculate explicit
polynomials for many permutation groups of small degrees. Often the existence of
such polynomials defined over Q could a priori be deduced by the Rigidity Method
(cf. [26, Chapter I]). However, even for almost simple groups of relatively small
degree, not all questions can be answered merely via 3-point covers.

Meanwhile, covers with more than three branch points have been computed to
solve some of those problems, like finding totally real polynomials with given Galois
group, but also because they sometimes give rise to multi-parameter polynomials
over Q. A spectacular result in the computation of covers with more than three
branch points was Granboulan’s explicit M24-polynomial in [12]. An important
source for examples of multi-parameter polynomials is Malle’s paper [23], which
also, along with Couveignes’ [4] and [5], outlines methods for their calculation.

The computational results of this article can be largely divided into two areas:
the calculation of explicit polynomials for some of the almost simple groups of
smallest permutation degree for which no polynomials were previously known and
the calculation of the first totally real polynomials for other almost simple groups.

Table 1 summarizes very briefly the basic features of the families of polynomials
occurring and of the Hurwitz spaces that they are parametrized by. Here, a Hurwitz
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Table 1. Overview of the polynomials computed in this article

Section G degree #branch Hurwitz variety Real Remarks
points fibers

§4 PSL5(2) 31 4 P1
α no

§5 PΓL3(4) 21 4 P1
α no

PGL3(4) 21 4 no derived from
previous;
base curve
not generi-
cally P1

PSL3(4) 21 5 no see previous
§5.5 PΓL3(4) 21 4 P1

α yes
§6.1 PGL2(11) 22 4 rank 1 ell. curve yes

PSL2(11) 11 4 yes
§6.2 PGL2(11) 12 4 rank 1 ell. curve yes

PSL2(11) 11 5 yes
§7 PSL3(3) 13 5 P2

α,β yes
§8 Aut(M22) 22 4 rank 1 ell. curve yes

M22 22 4 yes derived from
previous;
base curve P1

variety P1
α leads to a one-dimensional family of covers, parameterized by α, of the

projective line P1
t , and therefore a two-parameter polynomial f(α, t, x) ∈ Q(α, t)[x]

with the prescribed Galois group. Similarly, the Hurwitz variety P2
α,β in Section 7

leads to a three-parameter polynomial. In the “elliptic-curve” cases, one obtains the
existence of an infinite family fP (t, x) of one-parameter polynomials, parameterized
by the rational points P of a rank-1 elliptic curve; for the sake of simplicity, only
sample polynomials of these families are given. In some cases, polynomials for
normal subgroups are derived in a natural way from polynomials with a given
group. In these cases, it is to be understood in Table 1 that the Hurwitz variety
parameterizing the family of covers is the same as for the original group.

It should be noted that in several of the cases in Table 1 the precise nature of
the Hurwitz variety and the base curves of the covering maps became clear only via
explicit computation. In particular, the existence of rational points on the Hurwitz
space as well as the rationality of the base curve of the respective covers, both
necessary to obtain regular Galois realizations, was not always clear a priori. This
will be addressed in more detail in Sections 4-8. Before this, we will outline the
theoretical background and the general techniques used for the computations.

2. Theoretical background

We recall some basic facts about monodromy of covers, Hurwitz spaces and braid
group action. For a deeper introduction, cf. [10], [28] or [31].

2.1. Covers of the projective line. Let S = {p1, . . . , pr} be a finite subset of
the projective line P1C, p0 ∈ P1C \ S, and f : R → P1C \ S an n-fold covering
map. Then the fundamental group π1(P

1C \ S, p0) acts on the fiber f−1(p0) via
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lifting of paths. This yields a homomorphism of π1(P
1C \ S, p0) into Sn, and if

γi are homotopy classes of closed paths from p0 around pi (i = 1, . . . , r), ordered
counter-clockwise in P1C, their images under this action, say σ1, . . . , σr, generate a
group isomorphic to the Galois group of E | C(t), with E being the Galois closure
of the function field of (the compact Riemann surface) R. Furthermore, we have
σ1 · · ·σr = 1. We call (σ1, . . . , σr) the branch cycle description of the cover f . The
genus g of R is given by the Riemann-Hurwitz genus formula

g = −(n− 1) +
1

2

r∑

i=1

ind(σi),

where the index ind(σi) is defined as n minus the number of cycles of σi ∈ Sn. This
motivates the following definition:

Definition 2.1 (Genus-g tuple). Let G ≤ Sn be a transitive permutation group,
r ∈ N and σ1, . . . , σr ∈ G such that 〈σ1, . . . , σr〉 = G and σ1 · · ·σr = 1. Then
(σ1, . . . , σr) is called a genus-g tuple of G, with g := −(n− 1) + 1

2

∑r
i=1 ind(σi).

2.2. Hurwitz spaces. Let G be a finite group. Let S be a subset of the projective
line P1C of cardinality r, p0 be any point in P1 \ S and f : π1(P

1 \ S, p0) → G
be an epimorphism mapping none of the canonical generators γ1, . . . , γr of the
fundamental group to the identity. On the set of such triples (S, p0, f) one defines
an equivalence relation via (S, p0, f) ∼ (S′, p′0, f

′) :⇔ S = S′ and there exists a path
γ from p0 to p

′
0 in P1\S such that the induced map γ� : π1(P

1\S, p0) → π1(P
1\S, p′0)

on the fundamental groups fulfills f ′ ◦ γ� = f . Identifying the group G with the
deck transformation group of a Galois cover ϕ : X → P1 \ S, Riemann’s existence
theorem leads to a natural identification of these equivalence classes [S, p0, f ] with
equivalence classes [ϕ, h], where ϕ : X → P1 \ S is a Galois cover that can be
extended to a branched cover of P1 with exactly r branch points, and h is an
isomorphism from the group of deck transformations of ϕ to G; cf. [10, Section 1.2]
(especially for the precise identification between the two different sets of equivalence
classes) and [31, 10.1].

Denote the set of these equivalence classes by Hin
r (G). This space carries a

natural topological structure and also the structure of an algebraic variety. This
directly links the inverse Galois problem with the existence of rational points on
certain algebraic varieties. The main result is the following (cf. [31, Cor. 10.25] and
[8, Th. 4.3]):

Theorem 2.1. Let G be a finite group with Z(G) = 1. There is a universal family
of ramified coverings F : Tr(G) → Hin

r (G) × P1C such that for each h ∈ Hin
r (G),

the fiber cover F−1(h) → P1C is a ramified Galois cover with group G. This cover
is defined regularly over a field K ⊆ C if and only if h is a K-rational point. In
particular, the group G occurs regularly as a Galois group over Q if and only if
Hin

r (G) has a rational point for some r.

Monodromy action leads to a group theoretic interpretation of the above equiv-
alence classes of covers.
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Definition 2.2 (Nielsen class). Let G be a finite group, r ≥ 2 and

Er(G) := {(σ1, . . . , σr) ∈ (G \ {1})r | σ1 · · · · · σr = 1, 〈σ1, . . . , σr〉 = G}

the set of all generating r-tuples in G\{1} with product 1. Furthermore let E in
r (G)

be the quotient of Er(G) modulo conjugating the tuples simultaneously with ele-
ments of G.

For any r-tuple C := (C1, . . . , Cr) of non-trivial conjugacy classes of G the
Nielsen class Ni(C) is defined as the set of all (σ1, . . . , σr) ∈ Er(G) such that for
some permutation π ∈ Sr it holds that σi ∈ Cπ(i) for all i ∈ {1, . . . , r}. The

definition of Niin(C) is then possible in analogy to the above notation.

Denote by Hr the Hurwitz braid group on r strands. This group, a quotient of
the Artin braid group, can be defined as the group generated by r − 1 elements
β1, . . . , βr−1 fulfilling the classical braid relations

βiβj = βjβi for 1 ≤ i < j − 1 ≤ r − 2,

βiβi+1βi = βi+1βiβi+1 for 1 ≤ i ≤ r − 2

and the additional relation

β1 · · ·βr−1βr−1 · · ·β1 = 1

(cf. [26, Chapters III.1.1 and III.1.2]). The group Hr acts naturally on the set
Er(G) (with an induced action on E in

r (G)) via

(1) (σ1, . . . , σr)
βi := (σ1, . . . , σi−1, σiσi+1σ

−1
i , σi, . . . , σr), for i = 1, . . . , r − 1.

It is obvious that the sets Niin(C) are unions of orbits under these actions.
Furthermore, if Ur denotes the space of r-sets in P1C and Ψ : Hin(G) → Ur is the

branch point reference map, the elements of a given fiber are in 1-1 correspondence
with elements of E in

r (G). Indeed, the above action on equivalence classes of r-tuples
of elements of G is, via this correspondence, essentially the same as the action of
the fundamental group on the fiber via lifting of paths. Each of the orbits of the
braid group acting on Niin(C) corresponds to a connected component of Hin

r (G).
The union of all connected components corresponding to Niin(C) is what is usually
referred to as a Hurwitz space:

Definition 2.3 (Hurwitz spaces). For an r-tuple C of conjugacy classes of a group
G with a non-empty Nielsen class Niin(C), the union of components of Hin

r (G)
corresponding to Niin(C) is called the (inner) Hurwitz space of C.

If one leaves out the permutation π in the above definition of a Nielsen class,
one gets the notion of a straight Nielsen class:

SNi(C) := {(σ1, . . . , σr) ∈ Er(G) | σi ∈ C(i) for i = 1, . . . , r}.

The definition of SNiin(C) is then possible in analogy to Definition 2.2.
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Now always assume that Z(G) = {1} and that the braid group action on
SNiin(C) is transitive.1 Following [8, Theorem 4.3], one has the following mor-
phisms between (quasi-projective) varieties:

• F : T → Hin(C) × P1, the universal family of covers in the Nielsen class
Niin(C).

• Hin(C) → Ur, mapping each point of Hin(C) to its set of branch points.
• Proceeding to the pullback (Hin)′(C) := Hin(C)×Ur

Ur, one also obtains
a morphism (Hin)′(C) → Ur, with Ur the space of ordered r-sets in P1C.

• Via PGL2-action, (Hin)′(C) is birationally equivalent to P1C×P1C×P1C×
Hred(C), whereHred(C) is the image under the above map of the subvariety
of (Hin)′(C) consisting of covers with the first three branch points equal to
0, 1, and ∞ (in this order).

• This restriction gives a morphism of r−3-dimensional varieties Hred(C) →
Ur−3.

Particularly in the case r = 4, C := Hred(C) is a curve; it corresponds, via action
of PGL2(C), to the set of all covers with branch cycle description in C and ordered
branch point set (0, 1,∞, λ), for some λ ∈ C \ {0, 1}. (Of course, this choice
of branch points cannot always be assumed for covers defined over Q; therefore
one may consider covers with partially symmetrized branch point sets as well; cf.
Chapter III.7 in [26].) The existence of Galois covers defined over a field K is
therefore directly linked to the existence of K-points on such curves (often called
reduced Hurwitz spaces). We also refer to these reduced Hurwitz spaces as Hurwitz
curves. There are well known theoretical criteria to determine the genus of these
Hurwitz curves; cf. e.g. Thm. III.7.8 in [26].

3. Computational methods

3.1. Deformation of genus zero covers. Let Ni(C) be a Nielsen class of genus
zero 4-tuples generating a finite group G (always assume Z(G) = {1}). Recall
from Section 2 that if SNiin(C) contains a unique orbit of length n under the
action of the braid group, H is the corresponding connected component of the
(inner) Hurwitz space and H′ its pullback over U4, then there is a natural degree-n
cover H′ → U4, where H′ is birationally equivalent to C × (P1C)3, and a degree-
n cover C → P1C of (irreducible projective non-singular) curves. If, via Moebius
transformations, one fixes three of the four branch points of the genus zero covers,
say to 0, 1 and ∞, one obtains a family of branched covers T0 → C × P1C. Let t
be a parameter for the projective line on the right side. Then this family will have
ordered ramification locus in t: (0, λ, 1,∞), where λ is a function on C. As C is an
irreducible curve, its function field is of one variable (and of degree n over C(λ)),
i.e. equal to C(λ, α) for some function α. Therefore the family T0 → C × P1C can
be expressed by a polynomial equation f(λ, α, t,X) = 0, where f ∈ C(λ, α)[t,X] is
linear in t (because of the genus zero condition). For every specialization t 
→ t0
(e.g. to a ramification point), the coefficients of f(λ, α, t0, X) lie in the function
field C(λ, α). To determine these coefficients, embed C(λ) into the Laurent series
field C((λ)). Then, using the fact that the finite extensions of C((λ)) are all equal

1This condition assures that the Hurwitz space is an absolutely irreducible variety over its
field of definition. But even in the case of intransitive braid group action, there may still be an
absolutely irreducible component, granted that there is a “rigid” braid orbit, e.g. a unique orbit
of a given length.



1478 JOACHIM KÖNIG

to some C((μ)) with μe = λ, for some e ∈ N (cf. [31, Chapter 2.1.3]), all of these
coefficients have a Puiseux expansion in λ, i.e. can be written as a Laurent series

in μ := λ
1
e with some e ∈ N. Here the exponent e is nothing but the ramification

index in the Hurwitz space of some place lying over λ 
→ 0. This ramification index
can be determined by group theoretical means: it is the number of equivalence
classes of covers, i.e. of equivalence classes of 4-tuples (σ1, σ2, σ3, σ4) in SNiin(C),
that lead to the same degenerate cover, i.e. class triple (σ1σ2, σ3, σ4), upon letting
λ converge to zero.

There are two important cases for practical computations:

• If one knows an explicit polynomial for some degenerate (3-point) cover with
monodromy (σ1σ2, σ3, σ4) as above, one can determine e and then develop
Puiseux expansions to regain a cover with 4 branch points. The idea is to
gain a sufficiently good initial approximation and then use Newton iteration
to develop the series. A point in a given fiber of the non-degenerate cover
which converges to a multiplicity-k point X 
→ x0 of the degenerate cover
will be of the form X 
→ x0 + O(μe/k). To reach the necessary precision
of the initial approximation, one needs to determine the unknown first-
order coefficient. This is achieved by finding equations for the “opposite”
degeneration with monodromy (σ1, σ2, σ3σ4), corresponding to μ → 0 from
the viewpoint of a new parameter s := t/λ.

A detailed description of this method has been given by Couveignes in
[4], and an explicit Magma algorithm is contained in [20]. Compare also
the examples in the later sections, especially Section 4.3.

• If one even knows an explicit polynomial for some non-degenerate (4-point)
cover of the family (say, ramified in t 
→ (0, 1,∞, a) for some a ∈ C\{0, 1}),
then by mapping the branch points of the family to t 
→ (0, 1,∞, a+λ) one
can develop from an unramified point, i.e. actually obtain Laurent series in
λ for the above coefficients. As one starts from a non-ramified point on the
Hurwitz space, there is also no concern of getting into the Hurwitz space of
a wrong 4-point family by deforming, so computations can be done modulo
suitable primes (as one doesn’t need to double-check the monodromy via
numerical methods in C). However, for groups of larger degree, one cannot
expect to directly find a polynomial for a non-degenerate cover, as the
corresponding system of equations becomes too complicated.

Remark 3.1.

a) Of course all this remains true for r-tuples with r ≥ 5 as well. In this case
one either has to increase the transcendence degree to get the full Hurwitz
space or work at first only with a curve on the Hurwitz space by fixing r−1
branch points in t (in the unsymmetrized case).

b) So far, all considerations were made over C. However, for suitable choice of
the conjugacy classes in Ni(C), the corresponding Hurwitz space can some-
times be defined over Q. The Puiseux expansion approach may therefore
be carried out over an appropriate number field.

c) The above condition on the ordered ramification locus in t to be t 
→
(0, 1,∞, λ) corresponds to the unsymmetrized case; analogously, suitable
Moebius transformations lead to different symmetrized cases; e.g. in the
C2-symmetrized case one can w.l.o.g. consider all covers with ordered ram-
ification locus ({zeroes of t2 − λ}, 1,∞), etc.
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3.2. Finding algebraic dependencies. Assume for simplicity that the reduced
Hurwitz space (obtained from Hin(C) via PGL2-action) for a given family of covers
with r branch points can be defined over Q.2 As this reduced Hurwitz space is an
(r − 3)-dimensional algebraic variety, its function field has transcendence degree
r − 3. Therefore, any r − 2 elements of this function field must fulfill a non-trivial
algebraic equation over Q. In particular, the coefficients of an equation f(t, x) = 0
for the corresponding universal family of covers (cf. the following sections) are such
elements. This enables one to obtain explicit equations defining the Hurwitz space
over Q.

Again, for the sake of simplicity, assume r = 4; then the function field extension
corresponding to the reduced Hurwitz space cover is of the form F := Q(λ, α)|Q(λ),
with a function field F of one variable. The Puiseux expansion approach has embed-
ded F into the Laurent series field K((λ1/e)) (for a suitable e ∈ N and a suitable
number field K). There are now different ways to obtain dependencies between
two coefficients α1, α2 of the model. Under certain additional conditions, it will be
clear that Q(α1, α2) is already the full function field F , and therefore the algebraic
dependency between α1 and α2 is actually a defining equation for the Hurwitz
curve. For example, if the braid group acts primitively on the given Nielsen class,
then there is no intermediate field between F and Q(λ), so α1 := λ and α2 any
coefficient not contained in Q(λ) will suffice. This is usually not the best try,
as [F : Q(λ)] = |SNiin(C)| is often considerably larger than some other degrees
[F : Q(αi)] (see the next section for theoretical results on the gonality of F ).

The following approaches will be used in the following sections to obtain algebraic
dependencies (cf. also Section 5 of [4]):

1) If the coefficients αi are actually given as Laurent series in μ := λ1/e, simply
solve a system of linear equations in order to see whether α1, α2 fulfill a
polynomial equation of degrees n1, n2 respectively. As such an equation has
N := (n1 + 1)(n2 + 1) unknowns, series need to be expanded to precision
at least μN in order to obtain sufficiently many equations via comparison
of coefficients.

An explicit (and precise!) Laurent series expansion is usually difficult
to obtain over Q, as the coefficients grow quite rapidly. Therefore this ap-
proach, at least for dependencies of high degrees, can often be only obtained
modulo some prime.

2) Once the degrees for algebraic dependencies are known (or can be con-
jectured, e.g. after mod-p reduction), the corresponding systems of linear
equations can also be solved numerically for complex approximations, with
many different specialized values for λ, instead of one high-order Laurent
series in λ.

3) Instead of solving approximate complex equations numerically, a mod-p
solution can be lifted to many different solutions in Zp. The algebraic
dependencies can then be retrieved via interpolation.

4) If the degrees are not too high, algebraic dependencies can be obtained from
complex approximations via the LLL-algorithm (see [21]): suppose that α1,
α2 fulfill a rational polynomial equation of degrees n1 and n2 respectively;
specializing α1 to a rational value will leave α2 in a number field of degree
at most n2 over Q. With sufficient precision, we managed to retrieve the

2Otherwise one gets the analogous results over some number field K.
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minimal polynomials for these specialized values of α2 for degrees n2 up to
100. Again, repeating this for many (at least n1+1) different specializations
for α1 will allow interpolation to retrieve the original equation.

Remark 3.2. Especially for larger braid orbits, with braid genus g > 0, it may
not always be possible to directly find algebraic dependencies for all coefficients
occurring in an equation for the universal family (as some of these dependencies
may be of very large degree). Therefore, in order to check whether a rational
solution of some algebraic equation really corresponds to a “good” point on the
Hurwitz space (and not to a point on the boundary with degenerate monodromy!)
one may have to find this point by moving through the Hurwitz space using Newton
iteration. To do this, one can use the monodromy action of the Hurwitz braid group
(as the fundamental group of the space Ur) in order to gain, from an approximation
for a cover with branch cycle description (σ1, . . . , σr), approximations for all covers
with the same set of branch points and branch cycle description in the same braid
orbit. For example, applying the braid βi to a given cover with ordered branch point
set (p1, . . . , pr) corresponds to switching the i-th and the (i + 1)-th branch point

by moving each of them by 180 degrees on the disc around pi+pi+1

2 with radius

|pi−pi+1

2 | (assuming this disk contains no other branch points). See [31, Lemma
10.9].

3.3. Considerations about the gonality of function fields. Usually the alge-
braic dependencies f(a, b) = 0 will not be optimal with regard to the degrees of the
variables a, b involved. One can therefore use considerations about the gonality of
the function field K(a, b), involving computations of Riemann-Roch spaces, to find
good parameters, i.e. rational function fields with low index in the function field
K(a, b). This is especially useful in function fields of genus 0 or 1 or in hyperelliptic
function fields.

Definition 3.1 (Gonality). Let F |K be a function field of one variable. The
gonality gon(F |K) of F |K is defined as the minimum of the degree [F : K(x)] (for
x ∈ F ), i.e. the minimal index of a rational function field in F .

We use the following estimates on the gonality of function fields, which also yield
a method to explicitly find rational function fields K(x) ⊆ F of low index.

Lemma 3.1. Let g be the genus of the function field F |K. Then:

a) If g = 0, then gon(F |K) ≤ 2.
b) If g ≥ 2, then gon(F |K) ≤ 2g − 2.
c) If F |K has a prime divisor of degree one, then gon(F |K) ≤ g + 1.
d) If in addition g ≥ 2, then gon(F |K) ≤ g.

See [16, Lemma 6.6.5] for the proof. In each of the cases of Lemma 3.1, computa-
tion of suitable Riemann-Roch spaces yields explicit elements x ∈ F with [F : K(x)]
at most the bound given in the respective case.

3.4. Galois group verification. Once an exact polynomial equation (over Q or
another number field) for a member of a given family of covers, or even for the
entire family, has been found, it is necessary to verify the Galois group, especially
considering that significant parts of the computations were based on numerical ap-
proximations. There are several easy ways to gain evidence for the Galois group.
One of these is the computation of the monodromy by numerical means; this is a



COMPUTATION OF EXPLICIT POLYNOMIALS FOR GALOIS GROUPS 1481

solid tool, although not an exact method, and turning it into one requires consider-
able effort. However, in all the cases covered in the following sections, the structure
of the Galois group allows for rigorous proofs, which are therefore given in detail.

The following sections will apply the theoretical and computational background
to several examples of interest. For each example, the structure will roughly follow
the sequence of Sections 2 and 3: firstly, a presentation of the properties of the Hur-
witz family, resp. braid orbit, in question, followed by a description of the concrete
techniques applied for deformation of covers and retrieving algebraic dependencies;
finally, a presentation of explicit polynomials and verification of their Galois group.

4. A family of polynomials with Galois group PSL5(2) over Q(t)

We compute a family of coverings with four ramification points, defined over Q,
with regular Galois group PSL5(2). This yields the (to our knowledge) first explicit
polynomials with group PSL5(2) over Q(t).

4.1. A theoretical existence argument. The group PSL5(2) does not have
any rigid triples of rational conjugacy classes, and among the genus zero systems of
rational class 4-tuples, there is only one with a Hurwitz curve of genus zero. This
curve will turn out to be rational in the course of the explicit computations, but
this does not seem to be immediately clear by the standard braid orbit criteria (see
below). However, if one looks at class 5-tuples, it is possible to obtain PSL5(2) as
a regular Galois group over Q via purely theoretical arguments:

Proposition 4.1. The inner Hurwitz space for the class 5-tuple (2A, 2A, 2B,
2B, 3B) of PSL5(2) contains a rational curve over Q and therefore infinitely many
Q-points.

Proof. This 5-tuple of classes arises as a rational translate of a 4-tuple of classes in
Aut(PSL5(2)). This 4-tuple (of classes (2A, 2B, 2C, 6A)) has a single braid orbit
of length 46; its Hurwitz curve is of genus zero, and the images of the braids in the
action on this orbit fulfill an oddness condition to guarantee the rationality of this
genus zero curve.

Every Q-point of this rational curve realizes Aut(PSL5(2)) regularly over Q,
and as the PSL5(2)-fixed field of such a realization is a rational function field (of
degree 2 over the base field), one also obtains PSL5(2). �

As the explicit computation of such a field extension requires the computation
of PSL5(2)-covers with 5 branch points, we content ourselves with a 4-point family
in the following. Note, however, that the deformation methods of Section 3.1 could
be used to obtain members of the above 5-point family from the 4-point one.

4.2. Data of a Hurwitz family. Let G = PSL5(2) in its natural permutation
action on 31 points, and denote by 2A the class of involutions of cycle type (28.115),
by 3B the class of elements of order 3 with cycle type (310.1) in G, and by 8A the
unique class of elements of order 8 in G (of cycle type (82.43.2.1)). We consider the
straight Nielsen class SNi(C) of class tuples of length 4, of type (2A, 2A, 3B, 8A)
in G = PSL(5, 2), generating G and having product 1, i.e.

SNi(C) := {(σ1, . . . , σ4) ∈ G | σ1, σ2 ∈ 2A, σ3 ∈ 3B, σ4 ∈ 8A,

〈σ1, . . . , σ4〉 = G, σ1 · · ·σ4 = 1}.
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In the notation of Section 2, we have |SNiin(C)| = 24. The action of the braid
group on SNiin(C), as given in equation (1), is transitive and more precisely yields
that there is a family of covers T 
→ C×P1C, where C (the C2-symmetrized reduced
Hurwitz space) is an absolutely irreducible curve of genus zero, and for every h ∈ C
the corresponding fiber cover is a Galois cover of P1C with Galois group PSL5(2).

Although the usual braid genus criteria yield that the C2-symmetrized Hurwitz
space for this family is a genus-zero curve, it does not seem clear via standard
theoretical considerations (e.g. odd cycle argument for the braid group generators,
as in [26, Chapter III.7.4.]) whether it can also be defined as a rational curve over
Q. In particular, the cycle structure of the braid orbit generators acting on the
Nielsen class does not yield any places of odd degree. More precisely, the image
of the braid group is imprimitive on the 24 points, with 12 blocks of length 2 (i.e.
if F |Q(t) is the corresponding function field extension, of degree 24, we have an
inclusion Q(t) ⊂ E ⊂ F , with [E : Q(t)] = 12 and [F : E] = 2). As the images
in the action on the blocks of the three braids defining the ramification structure
of these fields have cycle structure (42.3.1), (7.3.2) and (25.12) respectively, it is
clear that E is still a rational function field. However the cycle structure of the
latter involution in the action on 24 points is (212), so it is possible that a degree-2
place of E ramifies in F , in which case the rationality of F is not guaranteed.3 We
therefore clarify the rationality of this curve by explicit computation.

4.3. Deformation of covers. We start with a degenerate cover with ramification
structure (2A, 21A, 8A), with group PSL5(2). We solve the corresponding system
of equations for the 3-point cover modulo 11, and then lift and retrieve algebraic
numbers from the 11-adic expansions. The triple is rigid, but as the conjugacy class
of the element of order 21 is not rational, we obtain a solution over a quadratic
number field, namely

0 = x21 · (x−1)7 · (x−a1)
3− t · (x2−2 ·x+a2)

8 · (x3−2 ·x2+a3 ·x+a4)
4 · (x−a5),

where

(a1, . . . , a5) := (
1

8
(−

√
−7 + 11),

1

16
(−

√
−7 + 11),

1

16
(
√
−7 + 21),

1

128
(−3

√
−7− 31),

1

8
(−

√
−7 + 3)).

From this degenerate cover, we develop complex approximations for a cover
branched in four points, using Puiseux expansions as outlined in Section 3.1. As
pointed out there, in order to turn the above 3-point cover into a first-order ap-
proximation of the 4-point family, we need to consider the “opposite” degenera-
tion as well. Therefore, write the element of order 21 as a product of two ele-
ments σ2 of class 2A and σ3 of class 3B. One verifies that in all cases, the triple
(σ2, σ3, (σ2σ3)

−1) generates an intransitive group isomorphic to PSL3(2)×C3, with
orbits of length 21, 7 and 3. Equations for the genus zero covers induced by this
triple on each orbit are easily computed (especially since the degree 21 action is

3Closer group theoretic examination yields some evidence for prime divisors of odd degree:
namely, the two 3-cycles of the braid group generator of cycle structure (72.32.22) correspond to
degenerate covers with three ramification points, generating two isomorphic but non-conjugate
(in PSL5(2)) subgroups. The same holds for the two 2-cycles of this braid group generator. The
explicit computations show that the corresponding prime divisors of ramification index 3 and 2
respectively are indeed of degree 1.
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imprimitive, so the corresponding equation arises as a composition of functions of
degree 3 and 7) and yield all the information needed for first-order approximations.

Now let C(x)|C(t) be the field extension of rational function fields corresponding
to the cover with four branch points. Via Moebius transformations (in x and in t)
it is possible to assume a defining polynomial

f := f(t, x) := f0(x)
3 · (x− 3)− t · g0(x)8 · g1(x)4 · x,

where deg(f0) = 10, deg(g0) = 2 and deg(g1) = 3 (so we have e.g. assumed the
element of order 8 to be the inertia group generator over infinity, and the element
of order 3 the one over zero). Also, assume that for some λ ∈ C the polynomials
fa := f(a, x) and fb := f(b, x) (where a and b shall denote the complex zeroes of
x2 + x + λ) become inseparable in accordance with the elements in the conjugacy
class 2A.

Once we have obtained a complex approximation of such a polynomial f , we then
slowly move the coefficient at x2 of the above polynomial g1 to a fixed rational value,
and apply Newton iteration to expand the other coefficients with sufficient precision
to then retrieve them as algebraic numbers (using the LLL-algorithm). One finds
that all the remaining coefficients come to lie in a cubic number field. For example,
specialization to the rational value −1 leads to a root field of x3−14x2−22x−16, as
can be verified with the values in Theorem 4.2. This already indicates that there is
a rational function field of index 3 in the (genus-zero) function field of the Hurwitz
space, which would enforce the latter function field to be rational over Q as well.
This will be confirmed by further computations.

4.4. Algebraic dependencies and exact equations. We now choose a prime p
such that the above solution, found over a cubic number field, reduces to an Fp-
point. Any prime such that the defining polynomial of the cubic number field has a
single root modulo p will do, e.g. p = 11 for our example. Then we apply approach
no. 3 described in Section 3.2; that is, we lift this point to sufficiently many p-
adic solutions (all coalescing modulo p) in order to obtain algebraic dependencies
between the coefficients.4 These dependencies are all of genus zero, and luckily
some of them are of very small degree; e.g. if c2 and c1 are the coefficients at x2

resp. x, of the polynomial g1, one obtains an equation

2∑

i=0

3∑

j=0

αijc
i
2c

j
1 = 0

of degrees 2 and 3 respectively. As there are a priori (2+ 1) · (3+ 1) = 12 unknown
coefficients αij , we only need 12 different p-adic liftings to find this dependency
as the smallest degree dependency between c1 and c2, and maybe a few more to
gain evidence that it is not a coincidence. Of course, we find αij ∈ Qp, but for
theoretical reasons we expect them to actually be rational numbers, and indeed
it is easy to retrieve the actual rational numbers from a sufficiently close p-adic
approximation. Next, one easily finds a parameter α for the rational function field
defined by this equation using Riemann-Roch spaces (cf. Lemma 3.1).

4Alternatively, one could just repeat the process of rational specialization and Newton iteration,
as above, sufficiently often, obtaining cubic minimal polynomials for the other coefficients in each
case, and then interpolate.
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Now, we can express all coefficients as rational functions in α and obtain the
following result:

Theorem 4.2. Let α, t be algebraically independent transcendentals over Q. Define
polynomials f0, g0, g1 ∈ Q(α)[x] as follows:

f0 := (x5 − 2
(α+ 1)(α+ 4)

α− 2
x4 − 2

(α+ 1)(α3 − 15α2 − 6α− 152)

(α− 2)(α+ 4)
x3

+ 8(α+ 1)(α2 − α+ 7)x2

− 7
(α+ 1)2(α3 + 12/7α2 + 3/7α+ 106/7)

α− 2
x+ 2

(α+ 1)5(α+ 4)

α− 2
)

· (x5 + 4
(α− 5)(α2 + 5/4α+ 19/4)

(α+ 1)2
x4 − 2

α3 + 42α2 + 45α+ 220

α+ 4
x3

− 12
(α+ 1)(α4 − 5/2α3 − 27/2α2 − 29α− 100)

(α− 2)(α+ 4)
x2

+ 9
(α+ 1)2(α3 + 8/3α2 + 19/3α+ 50/3)

α− 2
x− 3(α+ 1)4),

g0 := x2 − 6x− (α+ 1)2,

g1 := (x− (α+ 1)(α+ 4)

α− 2
) · (x2 + 2

(α− 2)(α+ 1)

α+ 4
x− (α+ 1)2).

Then the polynomial

f(α, t, x) := f3
0 · (x− 3)− t · g80g41 · x,

of degree 31 in x, has Galois group PSL5(2) over Q(α, t), with ramification struc-
ture (28.115, 28.115, 310.1, 82.43.2.1) with respect to t.

Proof. Dedekind reduction, together with the list of primitive groups of degree 31
(as implemented e.g. in Magma), shows that PSL5(2) must be a subgroup of the
Galois group. It therefore suffices to exclude the possibilities A31 and S31.

Multiplying t appropriately, we can assume the covers to be ramified in t =
0, t = ∞ and the zeroes of t2 + t + λ, with some parameter λ. Interpolating
through sufficiently many values of α one finds the degree-24 rational function

λ = h1(α)
h2(α)

parameterizing the Hurwitz curve. As e.g. α = 0 and α = 1/2 yield

the same value for λ, we set t = C · ( f
3
0 ·(x−3)

g8
0 ·g4

1 ·x
)(0, s) (evaluating x to a parameter

s of a rational function field, as well as α to 0, and multiplying with a suitable
constant C to obtain the above condition on the branch points). Then one can
check that over Q(s), the polynomial f(1/2, C2 · t, x) (again for a suitable constant
C2 to obtain the branch point conditions) splits into two factors of degrees 15 and
16. This means that for this particular point of the family, there is an index-31
subgroup of the Galois group that acts intransitively on the roots. As PSL5(2)
has such a subgroup and A31 and S31 don’t, the Galois group for this particular
specialization is PSL5(2). This specialization corresponds to an unramified point
on the (irreducible) Hurwitz space; therefore the entire family must belong to the
same Hurwitz space and therefore have Galois group PSL5(2) over Q(α, t). �
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We can now specialize α to any value that does not let two or more ramification
points coalesce to obtain polynomials with nice coefficients with group PSL5(2)
over Q(t). For example α 
→ 0 leads to:

Corollary 4.3. The polynomial

f̃(t, x) := (x5−95x4−110x3−150x2−75x−3)3(x5+4x4−38x3+56x2+53x−4)3(x−3)

−t(x2 − 6x− 1)8(x2 − x− 1)4(x+ 2)4x ∈ Q(t)[x]

defines a regular extension of Q(t) with Galois group PSL5(2).

In fact it can be seen from λ = h1(α)
h2(α)

(as in the proof above) that the only

specialized rational values for α that lead to degenerate covers (with two branch
points coalescing) are α 
→ −4, α 
→ −1 and α 
→ 2.

Remark 4.1. The above proof essentially uses the fact that PSL5(2) has two non-
conjugate actions on 31 points inducing the same permutation character. This can
of course be applied to other linear groups and has e.g. been used in [23] to verify
PSL2(11) (and others) as the Galois group of a family of polynomials. Compare
also the Galois group verifications in the following sections.

5. Polynomials with Galois group PSL3(4) ≤ G ≤ PΓL3(4) over Q(t)

5.1. Review of known results. Previously, there have not been any explicit
polynomials f(t,X) ∈ Q(t)[X] with regular Galois group PΓL3(4)(= PSL3(4).S3),
PGL3(4)(= PSL3(4).3) or PSL3(4). Malle gave a polynomial for PSL3(4).2 (the
extension of PSL3(4) by the field automorphism) in [24, Theorem 3], but this does
not yield a PSL3(4)-polynomial, as the PSL3(4)-fixed field does not have genus
0 (see however [32, p. 2] for a way to obtain from Malle’s polynomial a PSL3(4)-
polynomial over Q (not Q(t)).

Theoretical arguments for all PSL3(4) ≤ G ≤ PΓL3(4) to be a regular Galois
group over Q(t) have however been known for a long time (cf. [26], Example 4.2 in
Chapter IV.4).

5.2. Data of a Hurwitz family. We find polynomials for all groups PSL3(4) ≤
G ≤ PΓL3(4) by computing the Hurwitz space of a family of covers with Galois
group PΓL3(4), ramified over four places with ramification structure (27.17, 27.17,
35.16, 54.1) with regard to the natural degree 21 permutation representation of
PΓL3(4). The length of the corresponding Nielsen class is 20, and the C2-
symmetrized inner Hurwitz curve is a rational curve of genus zero. Therefore this
family leads to many polynomials with regular Galois group PΓL3(4) over Q. The
fixed field of PSL3(4) in such an extension is still of genus zero, as can be seen by
the coset action of the above class 4-tuple on PΓL3(4)/PSL3(4). However, even
the fixed field of PGL3(4) cannot be guaranteed to be a rational function field by
theoretical means (it is a genus zero degree-2 extension of the function field Q(t),
ramified in two places, which are possibly algebraically conjugate, in which case the
extension field need not be rational). The above fixed field would automatically
be rational for any rational point on the unsymmetrized Hurwitz curve, i.e. for a
regular PΓL3(4)-extension with all branch points rational, but this curve is not of
genus zero anymore.
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We therefore verify by explicit computation that the fixed field of PSL3(4) is
indeed a rational function field for suitable choices of parameters; this yields explicit
polynomials with regular Galois groups PGL3(4) and PSL3(4) as well.

5.3. A family of polynomials with regular Galois group PΓL3(4). The defor-
mation and algebraization process for our family is analogous to the one in Section 4
(note that the Hurwitz curves are rational in both cases). It should therefore suffice
to present the resulting polynomial. We note only briefly that a good permutation
triple from which to start the deformation process is the triple with cycle structures
(27.17, 82.4.1, 54.1), generating the transitive subgroup PSL3(4).2. A polynomial
for this triple is easily found modulo a small prime and then lifted to a polynomial
defined over a number field, in this case Q(

√
−1).

Theorem 5.1. The polynomial

f := (x3 + (α− 10)x2 − (α2 + 20)x+ 5α)5(x+ 1)5x

− t((α2 − 6α+ 45)x5 +
1

8
(α4 − 6α3 + 85α2 − 132α+ 1476)x4

+
1

2
(α4 − 4α3 + 53α2 − 138α+ 360)x3

+
1

4
α(α3 − 28α2 + 77α− 450)x2 +

1

2
α2(α2 − 2α+ 65)x+

1

8
α2(α− 5)2)3

· (α(α+ 3)x5 + (4α3 − 15α2 + 47α+ 192)x4

+ 2(2α4 − 20α3 + 127α2 − 329α+ 880)x3

+ 2(2α4 − 36α3 + 347α2 − 1485α+ 3000)x2

+ (−44α3 + 405α2 − 3325α+ 9000)x+ 125(α2 − 5α+ 40))

∈ Q(α, t)[x]

has regular Galois group PΓL3(4) over Q(α, t), with ramification structure
(27.17, 27.17, 35.16, 54.1) with regard to t.

Proof. Specializing in appropriate finite fields, one sees that the Galois group of f
is either PΓL3(4) or S21. Now PΓL3(4) has two non-conjugate subgroups U and V
of index 21. If one considers the action of PΓL3(4) on the right cosets of U , then
V is intransitive with orbits of length 5 and 16. The images of the desired inertia
subgroup generators σ1, . . . , σ4 in the action on the cosets of V are still of the same
cycle type and therefore belong to the same family of covers, but not to the same
cover.

A suitable linear transformation in t assures that the function field extension
Q(α)(x) | Q(α)(t) is ramified over t 
→ 0, t 
→ ∞ and t 
→ {zeroes of t2+t+μ(α)} for
some rational function μ(α) ∈ Q(α). This choice of ramification yields a good model
for the C2-symmetrized Hurwitz curve. One then notes that the specializations α 
→
10 and α 
→ 13 lead to the same ramification locus. If f10(t, x) = p10(x)− tq10(x)
and f13(t, x) = p13(x)− tq13(x) are the corresponding polynomials, the polynomial
p10(x) · q13(y) − q10(x) · p13(y) decomposes in Q[x, y] into factors of degree 5 and
16. This means that there is an index-21 subgroup in the Galois group of f10(t, x)
acting intransitively with orbits of length 5 and 16. Therefore f10 must have Galois
group PΓL3(4), and as our Hurwitz space is connected, the same must hold for the
two-parameter polynomial f . �
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5.4. Descent to proper normal subgroups of PΓL3(4). As noted above, the
fixed field of PGL3(4) in the Galois closure of f is of genus zero. It is given as
Q(α)(X,Y ), where pα(X,Y ) := X2 + 3(Y 2 − (α2 − 15α+ 90)(α2 − 5α+ 40)) = 0.
Although the conic given by pα(X,Y ) = 0 does not split generically, i.e. it does
not have any Q(α)-rational points, there are many values α0 ∈ Q for which the
specialized curve given by pα0

(X,Y ) = 0 has non-singular points, which means that
the residue field Q(X,Y )[α]/(α − α0) is a rational function field for these values
α 
→ α0, i.e. it can be parametrized as Q(s). One such example is α0 = 10. In
this case, parametrizing t as a rational function in s yields the following polynomial
with regular Galois group PGL3(4) over Q:

g := (s2 + 3)(x3 − 120x+ 50)5(x+ 1)5x

− 4

3 · 55 · 132 · 174 (111151s
2 + 389344s− 55891)

· (85x5 + 1582x4 + 5140x3 − 3700x2 + 7250x+ 625/2)3

· (130x5 + 3162x4 + 20580x3 + 13700x2 − 27750x+ 11250)

∈ Q(s)[x].

As the fixed field of PSL3(4) is a degree 3 genus zero extension of the fixed field of
PGL3(4), it is a rational function field whenever the latter field is. Parameterizing
it for our specialization α0 = 10 leads to the following polynomial with regular
Galois group PSL3(4):

h := (y2 − y + 1)3(x3 − 120x+ 50)5(x+ 1)5x

− (
4

751689
y6 − 4

250563
y5 − 2783192

132328584375
y4 +

27261652

396985753125
y3

− 2783192

132328584375
y2 − 4

250563
y +

4

751689
)

· (85x5 + 1582x4 + 5140x3 − 3700x2 + 7250x+ 625/2)3

· (130x5 + 3162x4 + 20580x3 + 13700x2 − 27750x+ 11250)

∈ Q(y)[x].

5.5. Totally real extensions with group PSL3(4) ≤ G ≤ PΓL3(4). The family
computed above does not yield any totally real Galois extensions with the above
groups, as can be checked easily by observing the action of complex conjugation
on the class tuples in the Nielsen class. This conjugation is never given by the
identity element of PΓL3(4), which would however be necessary to obtain a totally
real specialization.

On the other hand, the family used in [26], Example 4.2 in Chapter IV.4 to
obtain PSL3(4) ≤ G ≤ PΓL3(4) as regular Galois groups by theoretical means
does lead to such specializations. We computed this family in an earlier version
of this paper (cf. [20, Chapter 7]); it also has a rational Hurwitz curve, but the
corresponding polynomials turned out to have rather large coefficients, therefore
we will only give a single polynomial for PΓL3(4). Polynomials for proper normal
subgroups can be obtained from this in the usual way.
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Theorem 5.2. The polynomial

f(t, x) := (x
7
+

18453672844570518827351

464949935671
x
6

−
207994860612980146110393025396186540191

2812713705941843158
x
5

+
28099474349691216216874520999969033907118201199

1406356852970921579
x4

+
21503029546831034221405520441479341846831570716278114576

1406356852970921579
x3

−
9875613161329199448867490608939590635407743468957241801995410272

1406356852970921579
x2

+
2934026230199894418359951279176917481405147836113333573421902044849280

4672281903557879
x

+
3220744414074178541841609287239948730104227472303051912345719011603335979776

4672281903557879
)2

· (x7
+

6629673981088984

10049
x
6 −

4334793194194588640311258112563598440086555375

576034733687471381342032
x
5

+
19752423757662662431040186068639932484605957602986058305001

4703215594045637427773689649
x
4

−
14339959909531370924438660628225217373062780277511175009294545777430834

47262613504564610511697807282801
x
3

−
4636043913327361505565912998538088120702737210037510505278818632207867738346240

47262613504564610511697807282801
x2

+
40249862706254613322713917502727163663607545615294770224178252169533070179559152324432

47262613504564610511697807282801
x

+
43051490625182263519732001313495514865873179734602004170000304283139316449024

4634750377158001
)

− t(x +
291343529284

10049
)6(x − 2349544591)6(x − 346425124)3(x − 304781764)3x

has regular Galois group PΓL3(4) over Q(t). The ramification structure with re-
gard to t is of type (27.17, 28.15, 35.16, 62.32.2.1). Furthermore, let a be the unique
ramification point of f inside the real interval (−∞, 0), i.e. a ≈ −8.75 · 1022. Then
for t0 ∈ (a, 0), the specialized polynomial f(t0, x) is totally real.

6. Totally real extensions with group PGL2(11)

In this section and the following ones, we will focus on totally real exten-
sions. In particular, we compute explicit polynomials for totally real Galois ex-
tensions over Q, with Galois groups PGL2(11) = PSL2(11).2, PSL3(3), M22 and
Aut(M22) = M22.2. The first two of these groups are the smallest (with respect
to minimal faithful permutation degree) that have not been previously realized as
the Galois group of a totally real extension of Q, which means that explicit totally
real polynomials are now known for every transitive permutation group of degree at
most 13 (cf. [19]). By now, some totally real specializations of the PGL2(11)- and
PSL3(3)-polynomials computed below have been inserted into the database [19].

Note that totally real extensions can only be obtained via families with four
or more branch points; cf. [26], Chapter I, Example 10.2. The problem for the
group PGL2(11) is that, on the one hand, to obtain totally real fibers (i.e. a com-
plex conjugation acting as the identity) one needs to compute polynomials with at
least four branch points. On the other hand, PGL2(11) in its natural action has
no generating genus zero tuples of length r ≥ 4. There are however genus zero
tuples in the imprimitive action on 22 points, which stems from the exceptional



COMPUTATION OF EXPLICIT POLYNOMIALS FOR GALOIS GROUPS 1489

action of PSL2(11) on 11 points (this degree-11 action was also used by Malle to
compute totally real PSL2(11)-polynomials in [23, Section 9]). Below are explicit
computations for two such class tuples.

6.1. The ramification type (2A, 2B, 2B, 3A).

6.1.1. Hurwitz data and assumptions on branch points. Firstly, let C = (2A, 2B,
2B, 3A) be the quadruple of classes of PGL2(11), where 3A is the unique class of
elements of order 3, 2A is the class of involutions inside PSL2(11), and 2B is the
class of involutions outside PSL2(11). This is a genus zero tuple in the imprimitive
action on 22 points, so for a degree-22 cover of P1(C) with this ramification type,
we get the following inclusion of function fields: C(t) ⊆ C(s) ⊆ C(x), where exactly
two places of C(t) ramify in C(s) (namely the ones with inertia group generator not
contained in PSL2(11)), and exactly four places of C(s) ramify in C(x) (namely
two places lying over the ramified place of C(t) with inertia group generator in 2A,
and two lying over the place of C(t) with inertia group generator 3A).

The essential task is therefore to compute the extension C(x)|C(s), i.e. to com-
pute polynomials with PSL2(11)-monodromy, defined over Q if possible, and ram-
ification type (2A, 2A, 3A, 3A). The straight inner Nielsen class of these tuples in
PSL2(11) is of length |SNiin| = 54, with transitive braid group action and sym-
metrized braid orbit genus g12 = 1.5 Via Moebius transformations, we therefore
assume that the two places of C(s) with inertia group generator of order 3 are
s 
→ 0 and s 
→ ∞, and also fix the sum of the other two branch points. As
the cycle structure of an element σ in the class 3A of PSL2(11) in the action on
11 points is (33.12), and one of the 3-cycles remains fixed under conjugation with
NPSL2(11)(〈σ〉) (and therefore under the action of the decomposition subgroup),
one can assume w.l.o.g. for a model over Q that the place x 
→ 0 lies over s 
→ 0
(with ramification index 3), and the same for x 
→ ∞ and s 
→ ∞. That is, we may
w.l.o.g. look for polynomial equations x3 · f1(x)3 · f2(x)− s · g1(x)3 · g2(x) = 0, with
quadratic polynomials fi, gi.

6.1.2. Computations. Due to the relatively small degree, one can immediately
search for a mod-p reduced polynomial with the above restrictions on places and
the correct ramification, instead of starting with a 3-point cover and going through
the deformation process. There is a solution with the correct Galois group over F7.

Now lift this solution to many approximate Q7-solutions, with the set of zeroes
of s · (s2 + 4s+ λ) as the finite ramification locus (for many different values of λ).
Interpolation then yields an algebraic dependency between the coefficients at x1 of
the above polynomials g1 and g2, namely:

(88/19β2 − 112/19β + 32/19)α4 + (178/19β3 − 524/19β2 + 446/19β − 112/19)α3

+(287/38β4 − 650/19β3 + 2051/38β2 − 662/19β + 295/38)α2

+(59/19β5 − 687/38β4 + 773/19β3 − 1675/38β2 + 435/19β − 173/38)α

+10/19β6 − 70/19β5 + 21/2β4 − 595/38β3 + 491/38β2 − 213/38β + 1 = 0

(with α the coefficient of g1 and β the one of g2). Computation with Magma
confirms that this defines an elliptic curve of rank 1 (more precisely, this curve can

5Additional symmetrization of the branch points 3 and 4 does not decrease this genus.
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be defined by the cubic equation Y 2 = X3−27X−10), which therefore has infinitely
many points. Furthermore all other coefficients of the model can be expressed as
polynomials in α and β; therefore this curve is already a model of the reduced
Hurwitz curve of the PSL2(11)-family. So there are infinitely many equivalence
classes of covers defined over Q with this monodromy.

However, as we are interested in totally real polynomials, we need to choose
a point on the curve in such a way that complex conjugation on a fiber of the
corresponding PSL2(11)-cover is trivial in at least one segment of the punctured
projective line. Monodromy computations show that α = − 3

121 and β = 41
55 yield

such a point. This leads to the polynomial

f(s, x) := x3(x2 + x− 413

4114
)3(x2 − 23

726
x+

63

181016
)

−s(x2 − 3

121
x+

567

1131350
)3(x2 +

41

55
x− 413

102850
),

(2)

where specializations of s in the real interval [−0.623..,−0.619..] (between the two
algebraically conjugate branch points) lead to totally real fibers.

Now all that is left is to parameterize the above extension C(s)|C(t) over Q to
fit the positions of the branch points. This leads to the following:

Theorem 6.1. Let

f1(x) := x3(x2 + x− 413

4114
)3(x2 − 23

726
x+

63

181016
),

f2(x) := (x2 − 3

121
x+

567

1131350
)3(x2 +

41

55
x− 413

102850
),

and

F (t, x) := f1(x)
2 +

27280791476537

21954955473000
f1(x)f2(x)

+
766309482990625

1985274409206528
f2(x)

2 − tf1(x)f2(x) ∈ Q(t)[x].

Then F has regular Galois group PGL2(11) over Q(t) and possesses totally real
specializations for all t 
→ t0 > 135367 (i.e. t0 larger than the largest finite branch
point). The branch cycle structure with respect to t is of type (28.16, 211, 211, 36.14).

Proof. F is gained from the polynomial f in (2) by setting

t := (s2 +
27280791476537

21954955473000
s+

766309482990625

1985274409206528
)/s.

We therefore first prove that f has Galois group PSL2(11).
As in Section 5, we compute an explicit algebraic dependency for the natural

(degree 54) cover of the reduced Hurwitz space over P1. We use this to find a second
cover with the same ramification locus as the one given by f , and then make use
of the fact that PSL2(11) has two non-conjugate subgroups of index 11. Set

s̃ = −(
295

726
)3 · s3 · (s2 + s+ 693/850)3 · (s2 + 1107/295 · s− 5103/50150)

(s2+297/1475 · s−5103/1253750)3 · (s2+46/25 · s+12474/10625)
.
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Then f(s̃, x) splits over Q(s) into polynomials of degree 5 and 6. This shows that
Gal(f |Q(s)) has an intransitive index-11 subgroup, and so it cannot be equal to
A11 or S11. Dedekind reduction then leaves only PSL2(11). So f has Galois
group PSL2(11) over Q(s), and regularity is obvious. Therefore Gal(F |Q(t)) is
a transitive subgroup of the wreath product PSL2(11) � C2 < S22. Now one can
check immediately that the only transitive subgroup of this wreath product with a
generating 4-tuple (with product 1) of the necessary cycle structure is PGL2(11).
So PGL2(11) is the geometric Galois group of F , and regularity follows because
PGL2(11) is self-normalizing in S22.

Finally, the assertion about totally real specializations is easy to verify. �

6.2. The ramification type (2A, 2A, 2B, 4A).

6.2.1. Hurwitz data and assumptions on branch points. We consider another family,
namely (in analogy to the above notation) the one associated to the class quadru-
ple (2A, 2A, 2B, 4A) in PGL2(11). Again, looking at the imprimitive action of
PGL2(11) on 22 points, this monodromy leads to function fields C(t) ⊆ C(s) ⊆
C(x). This time, the PSL2(11)-part C(x)|C(s) is ramified over 5 points, with mon-
odromy of type (2A, 2A, 2A, 2A, 2A). We therefore look for points on a reduced
Hurwitz space of dimension 2. However, we do not need to parameterize the whole
surface.

A suitable choice of the branch points in C(t) and C(s) leads to a model for a two-
parameter polynomial, corresponding to a curve on the Hurwitz space. Firstly, we
can map the branch points of C(t) to 0, ∞ and −1±α, with α2 ∈ Q (for a rational
model) and only the places at zero and infinity ramifying in C(s). Therefore, by
setting t = s2, we may assume that the finite ramification locus of s in C(x) is
±
√
−1− α, ±

√
−1 + α, and therefore the set of zeroes of the polynomial s4+2s2+

(1− α2) =: s4 + 2s2 + λ.
We can use the braid criteria exhibited in [9] to confirm the existence of a cover

C → P1, where C is a curve of genus 1, parameterizing the polynomials with the
above monodromy and restrictions on branch points. More precisely, our restric-
tions on the branch points lead to the same braids (R0 := β1β4 and R1 := β2β3β2) as
curve no. 14 on p. 49 in [9]; the group generated by these braids acts intransitively on
the inner Nielsen class of PSL2(11)-generating tuples of type (2A, 2A, 2A, 2A, 2A),
with an isolated orbit of length 48 and corresponding braid orbit genus 1. (Alter-
natively, observe that the 4-tuple in PGL2(11) with which we started to obtain the
restrictions on the branch points has a Hurwitz curve of genus 1.)

6.2.2. Computations. As a starting point for the computations, we used a polyno-
mial with 4 branch points and PSL2(11) monodromy, computed by Malle in [23].
Develop this into a cover with 5 branch points (as done in the previous examples),
and observe that the normalizer of an involution in PSL2(11) fixes one of the 2-
cycles. Therefore we can assume a polynomial equation f(x)−s ·g1(x)2 ·g2(x) = 0,
with deg(f) = 11 and deg(gi) = 3 (i.e. the infinite place of C(x) lies over the
infinite place of C(s), with ramification index 2).

Specializing the coefficients of g1 and g2 at x
2 to sufficiently many rational values

again allowed an interpolation polynomial (of degree 4 in both variables), and
Magma computation again yields that this polynomial defines an elliptic curve of
rank 1.
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Now the procedure is the same as for the previous family: find a point on this
curve that allows for a totally real fiber cover (one such point yields the polynomial

g(s, x) := (x− 1)(x5 + 9x4 + 11x3 − 65x2 − 176x− 1292/11)

· (x5 + 14x4 − 17/2x3 − 18x2 + 1/2x+ 5/11)

− s(x3 + x− 14/11)2(x3 + 4x2 + 5x+ 18/11)

with Galois group PSL2(11)), and compose the resulting parameterization of s as
a rational function in x with t = s2.

The Galois group can of course be verified just as in Theorem 6.1. In this case,
we also computed a degree-12 polynomial defining the stem field of a stabilizer in
PGL2(11) in its natural action on 12 points. This is the polynomial g̃ in Theo-
rem 6.2 below. It was found in the following way: Let E be the splitting field of the
above polynomial g over Q(s). A primitive element of a subfield of E of degree 12
over Q(s) (corresponding to the stabilizer in PSL2(11) in its action on 12 points)
can be computed with Magma. From this, one obtains a primitive element of the
corresponding degree-12 extension of Q(s2) as well. By the Riemann-Hurwitz genus
formula, this field is of genus 2. Therefore its gonality is 2. Via computation of
Riemann-Roch spaces a rational subfield of index 2 can explicitly be parameterized.
A few linear transformations then yield the following polynomial:

Theorem 6.2. The polynomial

g̃(t, x) = ((x3 + x2 +
1

4
x+

1

22
)4(t+ 1249)− 364(x2 +

5

7
x− 1

44
)

· (x4 − 137

110
x2 − 3

5
x− 623

9680
)(x6 +

36

143
x5 − 323

143
x4 − 6381

3146
x3

− 9671

25168
x2 +

5715

138424
x− 7035

553696
))t

− 33 · 52 · 7 · 11
4

(x5 + 2x4 +
321

550
x3 − 427

550
x2 − 2771

9680
x+

401

5324
)2

· (x2 +
632

693
x− 6914

22869
)

has regular Galois group PGL2(11) over Q(t). The branch cycle structure with
respect to t is of type (26, 26, 25.12, 43). Furthermore, if a is the unique branch point
of g̃ inside (0,+∞), i.e. a ≈ 14.755 the positive root of t2+1249t−20511149/1100 =
0, then for t0 ∈ (0, a), the specialized polynomial g̃(t0, x) is totally real.

7. Totally real extensions with group G = PSL3(3)

7.1. A theoretical argument. Computing totally real PSL3(3)-extensions might
be possible via covers with four branch points; however, there are no genus zero
4-tuples with a Hurwitz curve of genus zero in PSL3(3). We therefore solve the
problem via a family of covers with five branch points, with branch cycle struc-
ture (24.15, 24.15, 24.15, 33.14, 33.14) in the natural permutation representation of
PSL3(3). The reason is that this family can be seen to give rise to totally real
PSL3(3)-extensions via purely theoretical criteria:

Proposition 7.1. In PSL3(3) (in its natural degree 13 action), let 2A be the class
of involutions of cycle type 24.15 and 3A the class of elements of cycle type 33.14.
Then the inner Hurwitz space of C := (2A, 3A, 2A, 3A, 2A) contains a rational
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genus zero curve over Q, and therefore infinitely many Q-points. Furthermore,
among these Q points, there are some that lead to totally real PSL3(3)-polynomials.

Proof. The group generated by the braids B0 := β2β3β2 and B1 := β2
1β

2
4 acts

intransitively on the 120 PSL3(3)-generating 5-tuples of the straight inner Nielsen
class SNiin((2A, 3A, 2A, 3A, 2A)). This braiding action corresponds to curve no.
(26) given on p. 51 in Dettweiler’s list of curves on Hurwitz spaces in [9]. The orbits
under this action are of lengths 12, 48 and 60, and the cycle structure of the braids
in the action on the orbit of length 12 yields a (rational) genus zero curve on the
Hurwitz space.

Alternatively, observe that the 4-tuple of classes in Aut(PSL3(3)) (as an imprim-
itive permutation group on 26 points) with cycle structures (28.110, 213, 36.18, 44.25)
has braid orbit genus g = 0. Our PSL3(3)-5-tuple becomes a rational translate of
this 4-tuple in a natural way, via ascending to the PSL3(3)-fixed field. Therefore
every rational point on the genus zero Hurwitz curve for the 4-tuple also yields a
regular realization of PSL3(3) with the desired monodromy.

The statement about totally real polynomials follows from group theoretic con-
siderations. One only needs to find an element of our braid orbit where the identity
element of PSL3(3) acts as complex conjugation on the branch cycles, as described
in [26, Thm. I.10.3]. This yields the existence of PSL3(3)-covers with totally real
fibers, and as rational points are dense around real points on our g = 0-Hurwitz
curve, there are also such covers defined over Q. �

7.2. Explicit computation. As a starting point for the computations, we use a
4-point cover with group PSL3(3), with branch cycle structure (2A, 3A, 3A, 4A),
as computed by Malle in [23]. From this, the usual deformation process of Section
3.1 leads to a 5-point cover with the above cycle structure after writing the element
of order 4 as a product of two involutions in PSL3(3).

Once this is achieved, Proposition 7.1 yields a recipe to compute a two-parameter
family of PSL3(3)-polynomials, parametrized by a rational curve on the Hurwitz
space, and specialize appropriately to obtain totally real extensions. This has been
carried out in [20, Chapter 8.2]. The computations are analogous to the ones that
have been performed several times by now. However, it turned out that the same
ramification type also yields a three-parameter family of covers defined over Q,
something that did not seem obvious from the theoretical arguments. We therefore
describe the computation leading to this stronger result.

7.3. A three-parameter family. Explicit computations show that the reduced
Hurwitz space H, consisting of equivalence classes of covers with partially ordered
branch point set ({zeroes of t3+ t2+at+ b}, 0,∞) (with parameters a, b) and mon-
odromy as above, does not only contain rational curves, but is in fact a rational
surface. Its function field is therefore of the form Q(α, β) with independent tran-
scendentals α, β. In other words, there is a three-parameter family f(α, β, t, x) of
PSL3(3)-polynomials over Q(t), with branch point restrictions as above. This
family was found, beginning with any member of the two-parameter family in
[20, Chapter 8.2], by once again applying the techniques of Section 3.2. Lifting
an inital mod-p solution to many different polynomials with the above restrictrion
on branch points yielded an algebraic equation between three suitable coefficients,
say α, γ and δ. Luckily, the curve given by this equation over the constant field Q(α)
was of genus zero and even rational. Riemann-Roch space computations therefore
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yield its parameter β as a rational function in α, γ and δ. Finally, algebraic depen-
dencies between α, β and any of the remaining coefficients of the model lead to the
following nice result:

Theorem 7.2. The polynomial

f(α, β, t, x) := f3
0 · f1 · x− t · g30 · g1 ∈ Q(α, β)(t)[X],

with

f0 := x3 + βx2 + (β − 3)x− 1

9
αβ2 +

4

9
αβ − 4

3
α,

f1 := x3 +
αβ2 − 4αβ + 12α− 3β2 − 9

(β − 3)2
x2 +

αβ2 − 4αβ + 12α− 9β − 9

3(β − 3)
x− 1,

g0 := x3 + αx2 +
1

3
αβx+

1

9
αβ − 1

3
α,

and

g1 := αx3 +
4αβ − 3α+ 9

3
x2 +

4αβ2 − 6αβ + 9α+ 9β − 27

9
x− α

has regular Galois group PSL3(3) over Q(α, β). Suitable specializations for α, β
and t yield totally real PSL3(3)-extensions.

Proof. The Galois group can again be verified using the two non-conjugate index-13
subgroups of PSL3(3). As for totally real extensions, it would be somewhat compli-
cated to classify all possibilities for specializations of α, β and t. We therefore con-
tent ourselves with the special case α 
→ −9, β 
→ −6. In this case, all choices t 
→ t0
with t0 between the two smallest real branch points, i.e. t0 ∈ (−4.37 . . . ,−2.47 . . .),
yield totally real specializations. �

The above family leads to PSL3(3)-polynomials with various other ramification
types as well. One particularly interesting observation is that f(α, β, t, x) (as a
polynomial in x) also defines a genus zero extension with respect to α (not just
with respect to t!), although not in rational parameterization. The branch cycle
structure with respect to α consists of six involutions (all of cycle structure (24.15)).

Remark 7.1. The next open cases with regard to totally real Galois extensions
occur for the permutation degree n = 14: there are no explicitly known to-
tally real Galois extensions of Q with Galois group PSL2(13) or PGL2(13). For
these groups, the genus zero approach will no longer work. This is obvious for
PGL2(13), as this group does not possess any generating genus zero tuples of
length ≥ 4. For PSL2(13), there is just one rational genus zero 4-tuple (of cycle
type (2A, 2A, 2A, 3A)), with a Hurwitz curve of genus g = 1. One might therefore
hope for an elliptic curve of rank ≥ 1, as in the above PGL2(11)-cases. However,
explicit computation showed that this is an elliptic curve of rank zero (and more
precisely, can be defined by y2 = x3 − 25x2 + 136x− 180), with no rational points
leading to covers with real fibers.

8. Totally real extensions with groups M22 and Aut(M22)

The automorphism group Aut(M22) = M22.2 of the Mathieu group M22 has
rational Hurwitz curves for genus zero 4-tuples, which however do not give rise
to totally real specializations. We therefore computed the Hurwitz space for the
family of cycle structures (27.18, 28.16, 211, 62.32.22). The braid orbit is of length
30, and the Hurwitz curve of genus 1. Once again, the elliptic curve turns out to be
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of rank one and does indeed provide rational points belonging to totally real fibers.
We only give one example, as follows.

Theorem 8.1. The polynomial

f(t, x) := 9180125(x2 + 77x− 572)6(x2 + 2816)3(2439x2 − 10318x+ 10912)2

− t(367205x8 + 59565800x7 − 3770832472x6 − 791515446176x5

− 14589494734496x4 + 556611262821376x3

+ 1682125644320768x2 − 12791977299017728x+ 14606802351030272)2

· (405x6 + 52290x5 + 5828131/8x4 − 433357099/8x3

+ 21649071627/32x2 − 3030076231x+ 3867113368)

has regular Galois group Aut(M22) over Q(t), with ramification structure
(27.18, 28.16, 211, 62.32.22) with regard to t. For all t0 > 1, the specialized poly-
nomial f(t0, x) is totally real.

Furthermore, after setting t := t(s) := (11s2 + 1)/(−132·83·1946873
23·53·1110·2712 s2 + 1), the

polynomial g(s, x) := f(t(s), x) has regular Galois group M22 over Q(s) and yields
totally real specializations for all s 
→ s0 ∈ Q with |s0| < 0.0184.

Proof. The assertions about totally real specializations can be easily checked; also
after proving the first assertion, one simply computes the discriminant to confirm
that the Galois group of g must be Aut(M22) ∩ A22 = M22.

So we are left with showing that Gal(f |Q(t)) ∼= Aut(M22). By Dedekind reduc-
tion, one quickly sees that the only candidates are Aut(M22) and S22. To exclude
the latter, one may use the fact that Aut(M22) has an index-77 subgroup act-
ing intransitively with orbits of degrees 6 and 16 (the stabilizer of a block of the
(3, 6, 22)-Steiner system). As the six fixed points of the involution generating the
inertia group at t 
→ ∞ form such a block, expand the six simple poles of t = t(x)
as a series in 1

t . The symmetric functions in these six elements then generate the
fixed field F of the Steiner block stabilizer. Sufficiently precise series yield an alge-
braic dependency describing F , and as the Riemann-Hurwitz formula shows that
this field is of genus 2, suitable Riemann-Roch space computations even yield an
equation in two variables of degrees 2 and 3 for F . Now express t through these two
variables; so far, everything has been based on approximations, but now verify that
the polynomial f(t, x) decomposes over (the genus 2 field) F into factors of degree
6 and 16. Riemann-Hurwitz shows that the fixed field of a 6-set stabilizer in S22

would have much higher genus; this proves the assertion. (Unfortunately, the oc-
curring equations are too large to fit into this paper; however, note that once again
this method of proof is rigorous and does not rely on numerical approximation as
a monodromy computation would.) �

9. Concluding remarks and applications

All the Hurwitz spaces under consideration in the previous sections turned out
to possess infinitely many rational points. In particular, Theorems 6.1, 6.2 and
8.1 provide a single polynomial with real fibers, corresponding to a rational point
on the respective Hurwitz curve. As mentioned above, there are actually infinitely
many rational points, as the curves are elliptic of rank rk > 0. As for any non-
singular cubic curve E, defined over Q, with E(Q) infinite, Q-points lie dense (in
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the topology of P2R) around any given rational point, one obtains as an immediate
corollary that the Hurwitz curves of all these families contain infinitely many points
with real fibers. This is because the property to possess real fibers is purely group
theoretic and therefore locally invariant in the Hurwitz space.

An obvious application of the parametric families is the search for number fields
with prescribed Galois group (and possibly prescribed signature) and small discrim-
inant; cf. the Klüners-Malle database [19]. We only give two examples. The first is
a totally real PGL2(11)-polynomial with root discriminant of small absolute value.

Lemma 9.1. The polynomial

g0(x) := x12 − 4x11 − 220x10 − 88x9 + 9768x8 + 18480x7 − 133760x6 − 382272x5

+352880x4 + 1664960x3 + 455488x2 − 994304x+ 217152

has Galois group PGL2(11) over Q and splitting field contained in R. The discrim-
inant of a root field is equal to 218 · 35 · 1113 · 416 ≈ 1031.

This polynomial is obtained from the polynomial g̃ in Theorem 6.2 by specializing
t 
→ 27/10 and then applying Magma’s method OptimizedRepresentation.

Also, the PSL3(3)-family from Theorem 7.2 has many specializations with
“small” discriminant in the sense that very few primes ramify. We conclude by
giving a PSL3(3)-number field ramified over one prime only.

Lemma 9.2. The polynomial

f0(x) := x13 − 6x12 − 4542x11 − 226075x10 + 8156061x9 + 770464590x8

+ 11462215447x7 − 970419905164x6 − 33706100049495x5

+ 18705429494567x4 + 29408002566579439x3 + 237585722590314749x2

− 2291157493210202812x− 11381632704121436976

has Galois group PSL3(3), and only the prime p = 83420911386433 ramifies in its
splitting field. In fact, a root field has discriminant p4.

This polynomial is obtained from Theorem 7.2, via α := 148/69, β := 1 and
t := −1, and again Magma’s OptimizedRepresentation.

Acknowledgements

The author would like to thank Peter Müller for introducing many of the subjects
of this work as well as carefully reading earlier versions, Jürgen Klüners for infor-
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