On the arithmetic dimension of triangle groups
HTML articles powered by AMS MathViewer
- by Steve Nugent and John Voight;
- Math. Comp. 86 (2017), 1979-2004
- DOI: https://doi.org/10.1090/mcom/3147
- Published electronically: November 8, 2016
- PDF | Request permission
Abstract:
Let $\Delta =\Delta (a,b,c)$ be a hyperbolic triangle group, a Fuchsian group obtained from reflections in the sides of a triangle with angles $\pi /a,\pi /b,$ $\pi /c$ drawn on the hyperbolic plane. We define the arithmetic dimension of $\Delta$ to be the number of split real places of the quaternion algebra generated by $\Delta$ over its (totally real) invariant trace field. Takeuchi has determined explicitly all triples $(a,b,c)$ with arithmetic dimension $1$, corresponding to the arithmetic triangle groups. We show more generally that the number of triples with fixed arithmetic dimension is finite, and we present an efficient algorithm to completely enumerate the list of triples of bounded arithmetic dimension.References
- P. L. Clark and J. Voight, Algebraic curves uniformized by congruence subgroups of triangle groups, preprint, \verb|arXiv:1506.01371|, 2015.
- Paula Cohen and Jürgen Wolfart, Modular embeddings for some nonarithmetic Fuchsian groups, Acta Arith. 56 (1990), no. 2, 93–110. MR 1075639, DOI 10.4064/aa-56-2-93-110
- Pierre Dusart, The $k$th prime is greater than $k(\ln k+\ln \ln k-1)$ for $k\geq 2$, Math. Comp. 68 (1999), no. 225, 411–415. MR 1620223, DOI 10.1090/S0025-5718-99-01037-6
- Robert Fricke and Felix Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bande 3, vol. 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1965 (German). MR 183872
- Robert A. Kucharczyk, Modular embeddings and rigidity for Fuchsian groups, Acta Arith. 169 (2015), no. 1, 77–100. MR 3353269, DOI 10.4064/aa169-1-5
- K. F. Lai, Algebraic cycles on compact Shimura surface, Math. Z. 189 (1985), no. 4, 593–602. MR 786286, DOI 10.1007/BF01168162
- Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, Vol. 61, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 352287
- Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Paul Schmutz Schaller and Jürgen Wolfart, Semi-arithmetic Fuchsian groups and modular embeddings, J. London Math. Soc. (2) 61 (2000), no. 1, 13–24. MR 1745404, DOI 10.1112/S0024610799008315
- Kisao Takeuchi, On some discrete subgroups of $\textrm {SL}_{2}(R)$, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 97–100. MR 262171
- Kisao Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), no. 4, 600–612. MR 398991, DOI 10.2969/jmsj/02740600
- Kisao Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), no. 1, 91–106. MR 429744, DOI 10.2969/jmsj/02910091
- Kisao Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 201–212. MR 463116
Bibliographic Information
- Steve Nugent
- Affiliation: Lady Margaret Hall College, Norham Gardens, Oxford OX2 6QA, United Kingdom
- Email: steve.nugent@me.com
- John Voight
- Affiliation: Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, New Hampshire 03755
- MR Author ID: 727424
- ORCID: 0000-0001-7494-8732
- Email: jvoight@gmail.com
- Received by editor(s): November 7, 2015
- Received by editor(s) in revised form: January 26, 2016
- Published electronically: November 8, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 1979-2004
- MSC (2010): Primary 11F03, 20H10; Secondary 11R52, 14G35
- DOI: https://doi.org/10.1090/mcom/3147
- MathSciNet review: 3626545