$2k$ superconvergence of $Q_k$ finite elements by anisotropic mesh approximation in weighted Sobolev spaces
HTML articles powered by AMS MathViewer
- by Wenming He and Zhimin Zhang;
- Math. Comp. 86 (2017), 1693-1718
- DOI: https://doi.org/10.1090/mcom/3159
- Published electronically: October 7, 2016
- PDF | Request permission
Abstract:
We first establish anisotropic finite element estimates for the discrete Green’s function of the Poisson equation. Then we prove that the bi-$k$ rectangular finite element method under a specially designed partition has the highest possible convergent rate at all element vertices for the Poisson equation on the unit square. Furthermore, we provide numerical comparison with the standard uniform rectangular partition and demonstrate that our a priori superconvergent error estimate is sharp up to a logarithm factor.References
- T. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element method, Computing 47 (1992), no. 3-4, 277–293 (English, with German summary). MR 1155498, DOI 10.1007/BF02320197
- T. Apel and S. Nicaise, The inf-sup condition for low order elements on anisotropic meshes, Calcolo 41 (2004), no. 2, 89–113. MR 2199215, DOI 10.1007/s10092-004-0086-5
- Thomas Apel, Serge Nicaise, and Joachim Schöberl, A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges, IMA J. Numer. Anal. 21 (2001), no. 4, 843–856. MR 1867421, DOI 10.1093/imanum/21.4.843
- Albo Carlos Cavalheiro, Weighted Sobolev spaces and degenerate elliptic equations, Bol. Soc. Parana. Mat. (3) 26 (2008), no. 1-2, 117–132. MR 2505460, DOI 10.5269/bspm.v26i1-2.7415
- M. Asadzadeh, A. H. Schatz, and W. Wendland, Asymptotic error expansions for the finite element method for second order elliptic problems in $\Bbb R^N$, $N\geq 2$. I: Local interior expansions, SIAM J. Numer. Anal. 48 (2010), no. 5, 2000–2017. MR 2745271, DOI 10.1137/080742737
- M. Asadzadeh, A. H. Schatz, and W. Wendland, A new approach to Richardson extrapolation in the finite element method for second order elliptic problems, Math. Comp. 78 (2009), no. 268, 1951–1973. MR 2521274, DOI 10.1090/S0025-5718-09-02241-8
- Constantin Bacuta, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates, Numer. Funct. Anal. Optim. 26 (2005), no. 6, 613–639. MR 2187917, DOI 10.1080/01630560500377295
- Randolph E. Bank and Jinchao Xu, Asymptotically exact a posteriori error estimators. I. Grids with superconvergence, SIAM J. Numer. Anal. 41 (2003), no. 6, 2294–2312. MR 2034616, DOI 10.1137/S003614290139874X
- C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods, Hunan Science and Technology Press, Hunan, China, 2001 (in Chinese).
- C. Chen, Superconvergence for finite element solution and its derivatives, Numerical Math. of Chinese Univ. 2 (1981), 118–125 (in Chinese).
- Chuanmiao Chen and Shufang Hu, The highest order superconvergence for bi-$k$ degree rectangular elements at nodes: a proof of $2k$-conjecture, Math. Comp. 82 (2013), no. 283, 1337–1355. MR 3042566, DOI 10.1090/S0025-5718-2012-02653-6
- Shaochun Chen, Dongyang Shi, and Yongcheng Zhao, Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA J. Numer. Anal. 24 (2004), no. 1, 77–95. MR 2027289, DOI 10.1093/imanum/24.1.77
- R. G. Durán, Error estimates for anisotropic finite elements and applications, report on ICM 2006.
- Ricardo G. Durán, Lucia Gastaldi, and Claudio Padra, A posteriori error estimators for mixed approximations of eigenvalue problems, Math. Models Methods Appl. Sci. 9 (1999), no. 8, 1165–1178. MR 1722056, DOI 10.1142/S021820259900052X
- Jim Douglas Jr. and Todd Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Roy. Irish Acad., Dublin, 1973, pp. 89–92. MR 366044
- Jim Douglas Jr., Todd Dupont, and Mary Fanett Wheeler, An $L^{\infty }$ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. no. , no. R-2, 61–66 (English, with French summary). MR 359358
- Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York-London, 1976, pp. 207–274. MR 466912
- J. Guzmán, D. Leykekhman, J. Rossmann, and A. H. Schatz, Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods, Numer. Math. 112 (2009), no. 2, 221–243. MR 2495783, DOI 10.1007/s00211-009-0213-y
- Wen-ming He, Error estimates of finite element method about elliptic problems with singular righthand side, Appl. Math. Comput. 188 (2007), no. 1, 824–832. MR 2327758, DOI 10.1016/j.amc.2006.10.056
- W. Hoffmann, A. H. Schatz, L. B. Wahlbin, and G. Wittum, Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. I. A smooth problem and globally quasi-uniform meshes, Math. Comp. 70 (2001), no. 235, 897–909. MR 1826572, DOI 10.1090/S0025-5718-01-01286-8
- Yunqing Huang and Jinchao Xu, Superconvergence of quadratic finite elements on mildly structured grids, Math. Comp. 77 (2008), no. 263, 1253–1268. MR 2398767, DOI 10.1090/S0025-5718-08-02051-6
- Michal Křížek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal. 29 (1992), no. 2, 513–520. MR 1154279, DOI 10.1137/0729031
- Ju. P. Krasovskiĭ, Isolation of the singularity in Green’s function, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 977–1010 (Russian). MR 223740
- Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006.
- Q. Lin and Q. Zhu, The Preprocessing and Postprocessing for Finite Element Methods, Shanghai Scientific and Technical Press, 1994 (in Chinese).
- Shmuel Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Anal. 29 (1992), no. 1, 257–270. MR 1149097, DOI 10.1137/0729017
- Alfred H. Schatz and Lars B. Wahlbin, Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. II. The piecewise linear case, Math. Comp. 73 (2004), no. 246, 517–523. MR 2028417, DOI 10.1090/S0025-5718-03-01570-9
- O. Sahni, J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor, Efficient anisotropic adaptive discretization of the cardiovascular system, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5634–5655. MR 2243320, DOI 10.1016/j.cma.2005.10.018
- Vidar Thomée, High order local approximations to derivatives in the finite element method, Math. Comp. 31 (1977), no. 139, 652–660. MR 438664, DOI 10.1090/S0025-5718-1977-0438664-4
- Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. MR 1439050, DOI 10.1007/BFb0096835
- Zhimin Zhang, Ultraconvergence of the patch recovery technique. II, Math. Comp. 69 (2000), no. 229, 141–158. MR 1680911, DOI 10.1090/S0025-5718-99-01205-3
- Zhimin Zhang and Runchang Lin, Ultraconvergence of ZZ patch recovery at mesh symmetry points, Numer. Math. 95 (2003), no. 4, 781–801. MR 2013128, DOI 10.1007/s00211-003-0457-x
- Ai Hui Zhou and Ji Chun Li, The full approximation accuracy for the stream function-vorticity-pressure method, Numer. Math. 68 (1994), no. 3, 427–435. MR 1313153, DOI 10.1007/s002110050070
- Chao Ding Zhu and Qun Lin, Youxianyuan chaoshoulian lilun, Hunan Science and Technology Publishing House, Changsha, 1989 (Chinese). MR 1200243
Bibliographic Information
- Wenming He
- Affiliation: Department of Mathematics, Wenzhou University, Wenzhou, Zhejiang 325035, People’s Republic of China
- MR Author ID: 671119
- Email: hewenming@wzu.edu.cn, he_wenming@aliyun.com
- Zhimin Zhang
- Affiliation: Beijing Computational Science Research Center, Beijing 100093, People’s Republic of China – and — Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Email: zmzhang@csrc.ac.cn, ag7761@wayne.edu
- Received by editor(s): January 8, 2015
- Received by editor(s) in revised form: August 24, 2015, November 13, 2015, and January 24, 2016
- Published electronically: October 7, 2016
- Additional Notes: The first author was supported in part by the National Natural Science Foundation of China (11671304, 11171257, 11301396), and the Zhejiang Provincial Natural Science Foundation, China (No. LY15A010015). The second author is the corresponding author and was supported in part by the National Natural Science Foundation of China, grants 11471031, 91430216, U1530401, and the US National Science Foundation, grant DMS-1419040
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 1693-1718
- MSC (2010): Primary 65N30, 65N25, 65N15
- DOI: https://doi.org/10.1090/mcom/3159
- MathSciNet review: 3626533