The ANOVA decomposition of a non-smooth function of infinitely many variables can have every term smooth
HTML articles powered by AMS MathViewer
- by Michael Griebel, Frances Y. Kuo and Ian H. Sloan;
- Math. Comp. 86 (2017), 1855-1876
- DOI: https://doi.org/10.1090/mcom/3171
- Published electronically: October 7, 2016
- PDF | Request permission
Abstract:
The pricing problem for a continuous path-dependent option results in a path integral which can be recast into an infinite-dimensional integration problem. We study ANOVA decomposition of a function of infinitely many variables arising from the Brownian bridge formulation of the continuous option pricing problem. We show that all resulting ANOVA terms can be smooth in this infinite-dimensional case, despite the non-smoothness of the underlying payoff function. This result may explain why quasi-Monte Carlo methods or sparse grid quadrature techniques work for such option pricing problems.References
- Peter Acworth, Mark Broadie, and Paul Glasserman, A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing, Monte Carlo and quasi-Monte Carlo methods 1996 (Salzburg), Lect. Notes Stat., vol. 127, Springer, New York, 1998, pp. 1–18. MR 1644509, DOI 10.1007/978-1-4612-1690-2_{1}
- Jan Baldeaux and Michael Gnewuch, Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition, SIAM J. Numer. Anal. 52 (2014), no. 3, 1128–1155. MR 3200424, DOI 10.1137/120896001
- Patrick Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 534323
- Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR 1642391, DOI 10.1090/surv/062
- Hans-Joachim Bungartz and Michael Griebel, Sparse grids, Acta Numer. 13 (2004), 147–269. MR 2249147, DOI 10.1017/S0962492904000182
- R. E. Caflisch, W. Morokoff, and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1, 27–46 (1997).
- Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403–413. MR 132591, DOI 10.1090/S0002-9947-1961-0132591-2
- M. Davis, Construction of Brownian motion, Stochastic Processes I, 2004–2005. http://www2.imperial.ac.uk/~mdavis/msc_home_page.htm
- Josef Dick and Michael Gnewuch, Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition, J. Approx. Theory 184 (2014), 111–145. MR 3218795, DOI 10.1016/j.jat.2014.04.014
- Josef Dick, Frances Y. Kuo, and Ian H. Sloan, High-dimensional integration: the quasi-Monte Carlo way, Acta Numer. 22 (2013), 133–288. MR 3038697, DOI 10.1017/S0962492913000044
- Paul Glasserman, Monte Carlo methods in financial engineering, Applications of Mathematics (New York), vol. 53, Springer-Verlag, New York, 2004. Stochastic Modelling and Applied Probability. MR 1999614
- Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, The smoothing effect of the ANOVA decomposition, J. Complexity 26 (2010), no. 5, 523–551. MR 2719646, DOI 10.1016/j.jco.2010.04.003
- Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, The smoothing effect of integration in $\Bbb {R}^d$ and the ANOVA decomposition, Math. Comp. 82 (2013), no. 281, 383–400. MR 2983028, DOI 10.1090/S0025-5718-2012-02578-6
- M. Griebel, F. Y. Kuo, and I. H. Sloan, Note on “the smoothing effect of integration in $\mathbb {R}^d$ and the ANOVA decomposition”, Math. Comp., this issue.
- Fred J. Hickernell, Thomas Müller-Gronbach, Ben Niu, and Klaus Ritter, Multi-level Monte Carlo algorithms for infinite-dimensional integration on $\Bbb R^{\Bbb N}$, J. Complexity 26 (2010), no. 3, 229–254. MR 2657363, DOI 10.1016/j.jco.2010.02.002
- Junichi Imai and Ken Seng Tan, Minimizing effective dimension using linear transformation, Monte Carlo and quasi-Monte Carlo methods 2002, Springer, Berlin, 2004, pp. 275–292. MR 2076939
- Steven G. Krantz and Harold R. Parks, The implicit function theorem, Birkhäuser Boston, Inc., Boston, MA, 2002. History, theory, and applications. MR 1894435, DOI 10.1007/978-1-4612-0059-8
- F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski, On decompositions of multivariate functions, Math. Comp. 79 (2010), no. 270, 953–966. MR 2600550, DOI 10.1090/S0025-5718-09-02319-9
- Paul Lévy, Processus Stochastiques et Mouvement Brownien. Suivi d’une note de M. Loève, Gauthier-Villars, Paris, 1948 (French). MR 29120
- Ruixue Liu and Art B. Owen, Estimating mean dimensionality of analysis of variance decompositions, J. Amer. Statist. Assoc. 101 (2006), no. 474, 712–721. MR 2281247, DOI 10.1198/016214505000001410
- I. M. Sobol′, Sensitivity estimates for nonlinear mathematical models, Math. Modeling Comput. Experiment 1 (1993), no. 4, 407–414 (1995). MR 1335161
- J. Michael Steele, Stochastic calculus and financial applications, Applications of Mathematics (New York), vol. 45, Springer-Verlag, New York, 2001. MR 1783083, DOI 10.1007/978-1-4684-9305-4
- Hans Triebel, Bases in function spaces, sampling, discrepancy, numerical integration, EMS Tracts in Mathematics, vol. 11, European Mathematical Society (EMS), Zürich, 2010. MR 2667814, DOI 10.4171/085
- Hans Triebel, Numerical integration and discrepancy, a new approach, Math. Nachr. 283 (2010), no. 1, 139–159. MR 2598598, DOI 10.1002/mana.200910842
- Grzegorz W. Wasilkowski and Henryk Woźniakowski, On tractability of path integration, J. Math. Phys. 37 (1996), no. 4, 2071–2086. MR 1380891, DOI 10.1063/1.531493
Bibliographic Information
- Michael Griebel
- Affiliation: Institut für Numerische Simulation, Universität Bonn, Wegelerstrasse 6, 53115, Bonn, Germany – and – Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
- MR Author ID: 270664
- Email: griebel@ins.uni-bonn.de
- Frances Y. Kuo
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
- MR Author ID: 703418
- Email: f.kuo@unsw.edu.au
- Ian H. Sloan
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
- MR Author ID: 163675
- ORCID: 0000-0003-3769-0538
- Email: i.sloan@unsw.edu.au
- Received by editor(s): May 14, 2014
- Received by editor(s) in revised form: June 23, 2015, and November 29, 2015
- Published electronically: October 7, 2016
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 1855-1876
- MSC (2010): Primary 41A63, 41A99; Secondary 65D30
- DOI: https://doi.org/10.1090/mcom/3171
- MathSciNet review: 3626540