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COMBINING MAXIMAL REGULARITY AND ENERGY

ESTIMATES FOR TIME DISCRETIZATIONS

OF QUASILINEAR PARABOLIC EQUATIONS

GEORGIOS AKRIVIS, BUYANG LI, AND CHRISTIAN LUBICH

Abstract. We analyze fully implicit and linearly implicit backward difference
formula (BDF) methods for quasilinear parabolic equations, without making

any assumptions on the growth or decay of the coefficient functions. We com-
bine maximal parabolic regularity and energy estimates to derive optimal-order
error bounds for the time-discrete approximation to the solution and its gra-
dient in the maximum norm and energy norm.

1. Introduction

In this paper we study the time discretization of quasilinear parabolic differential
equations by backward difference formulas (BDF). In contrast to the existing liter-
ature, we allow for solution-dependent coefficients in the equation that degenerate
as the argument grows to infinity or approaches a singular set. To deal with such
problems, we need to control the maximum norm of the error and possibly also of
its gradient. As we show in this paper, such maximum norm estimates for BDF
time discretizations become available by combining two techniques:

• discrete maximal parabolic regularity, as studied in Kovács, Li & Lubich
[14] based on the characterization of maximal Lp-regularity by Weis [24]
and a discrete operator-valued Fourier multiplier theorem by Blunck [7];
and

• energy estimates, which are familiar for implicit Euler time discretizations
and have become feasible for higher-order BDF methods (up to order 5) by
the Nevanlinna-Odeh multiplier technique [19] as used in Akrivis & Lubich
[4].

In Section 2 we formulate the parabolic initial and boundary value problem and
its time discretization by fully implicit and linearly implicit BDF methods, and
we state our main results. For problems on a bounded Lipschitz domain Ω in
R2 or R3 with sufficiently regular solutions, we obtain optimal-order error bounds
in the maximum and energy norms. For problems on bounded smooth domains
in arbitrary space dimension we obtain optimal-order error bounds even in the
L∞(0, T ;W 1,∞(Ω)) and L2(0, T ;H2(Ω)) norms.

The proof of these results makes up the remainder of the paper. In Section 3
we formulate a common abstract framework for both results and give a continuous-
time perturbation result after which we model the stability proof of BDF methods
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in Section 4. This proof relies on time-discrete maximal regularity and energy esti-
mates. In Section 5 we study existence and uniqueness of the numerical solutions,
and in Section 6 we discuss the consistency error of the fully and linearly implicit
BDF methods. In the short Section 7 we combine the obtained estimates to prove
the error bounds of our main results. In the remaining Sections 8 and 9, which
use different techniques of analysis, it is verified that the concrete parabolic prob-
lem and its time discretization fit into our abstract framework. In particular, the
uniform discrete maximal parabolic regularity of the BDF methods is shown in the
required Lq and W−1,q settings.

While we restrict our attention in this paper to semidiscretization in time of
standard quasilinear parabolic equations by BDF methods, the combination of dis-
crete maximal regularity and energy estimates to obtain stability and error bounds
in the maximum norm is useful for a much wider range of problems: for other time
discretizations, for full discretizations (in combination with the discrete maximal
regularity of semidiscrete finite element methods; see Li [16] and Li & Sun [17]),
and also for other classes of nonlinear parabolic equations. Such extensions are left
to future work. The present paper can thus be viewed as a proof of concept for this
powerful approach.

2. Problem formulation and statement of the main results

2.1. Initial and boundary value problem. For a bounded domain Ω ⊂ Rd,
a positive T, and a given initial value u0, we consider the following initial and
boundary value problem for a quasilinear parabolic equation, with homogeneous
Dirichlet boundary conditions,

(2.1)

⎧⎪⎨⎪⎩
∂tu = ∇ ·

(
a(u)∇u) in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(·, 0) = u0 in Ω.

We assume that a is a positive smooth function on the real line, but impose oth-
erwise no growth or decay conditions on a (for example, we may have a(u) = eu).
By the maximum principle, the solution of the above problem is bounded, provided
the initial data u0 is bounded; note that then there exists a positive number K
(depending on ‖u‖L∞(0,T ;L∞(Ω))) such that K−1 ≤ a(u(x, t)) ≤ K, for all x ∈ Ω
and 0 ≤ t ≤ T . However, boundedness of the numerical approximations is not
obvious.

Remark 2.1 (direct extensions). Our techniques and results can be directly extended
to the following cases:

• The function a is continuously differentiable and positive only in an interval
I ⊂ R that contains all exact solution values, u(x, t) ∈ I; in particular,
singularities in a are allowed.

• a is a function of x, t and u: a = a(x, t, u).
• a(u) is a positive definite symmetric d× d matrix.
• A semilinear term f(x, t, u,∇u) with a smooth function f is added to the
right-hand side of the differential equation. No growth conditions on f need
to be imposed, but we assume smoothness of the exact solution.

Operator notation: We consider A(w) defined by A(w)u := −∇ ·
(
a(w)∇u) as a

linear operator on Lq(Ω), self-adjoint on L2(Ω).
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2.2. Fully and linearly implicit BDF methods.

2.2.1. Fully implicit methods. We let tn = nτ, n = 0, . . . , N, be a uniform partition
of the interval [0, T ] with time step τ = T/N, and consider general k-step backward
difference formulas (BDF) for the discretization of (2.1):

(2.2)
1

τ

k∑
j=0

δjun−j = −A(un)un,

for n = k, . . . , N, where u1, . . . , uk−1 are sufficiently accurate given starting approx-
imations and the coefficients of the method are given by

δ(ζ) =

k∑
j=0

δjζ
j =

k∑
�=1

1

�
(1− ζ)�.

The method is known to have order k and to be A(α)-stable with angle α =
90◦, 90◦, 86.03◦, 73.35◦, 51.84◦, 17.84◦ for k = 1, . . . , 6, respectively; see [12, Section
V.2]. A(α)-stability is equivalent to | arg δ(ζ)| ≤ 180◦−α for |ζ| ≤ 1. Note that the
first- and second-order BDF methods are A-stable, that is, Re δ(ζ) ≥ 0 for |ζ| ≤ 1.

2.2.2. Linearly implicit methods. Since equation (2.2) is in general nonlinear in the
unknown un, we will also consider the following linearly implicit modification:

(2.3)
1

τ

k∑
j=0

δjun−j = −A
( k−1∑

j=0

γjun−j−1

)
un,

for n = k, . . . , N, with the coefficients γ0, . . . , γk−1 given by

γ(ζ) =
1

ζ

[
1− (1− ζ)k

]
=

k−1∑
i=0

γiζ
i.

Notice that now the unknown un appears in (2.3) only linearly; therefore, to advance
with (2.3) in time, we only need to solve, at each time level, just one linear equation,
which reduces to a linear system if we discretize also in space.

2.3. Main results. In this paper we prove the following two results.

Theorem 2.1. Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain. If the solution
u of (2.1) is sufficiently regular and the starting approximations are sufficiently
accurate, then there exist τ0 > 0 and C < ∞ such that for stepsizes τ ≤ τ0 and
Nτ ≤ T , the fully and linearly implicit BDF methods (2.2) and (2.3), respectively,
of order k ≤ 5, have unique numerical solutions un ∈ C(Ω) ∩ H1

0 (Ω) with errors
bounded by

max
k≤n≤N

‖un − u(tn)‖L∞(Ω) ≤ Cτk,(2.4)

(
τ

N∑
n=k

‖un − u(tn)‖2H1(Ω)

)1/2

≤ Cτk.(2.5)

Theorem 2.2. Let the bounded domain Ω ⊂ Rd be smooth, where d ≥ 1. If
the solution u of (2.1) is sufficiently regular and the starting approximations are
sufficiently accurate, then there exist τ0 > 0 and C < ∞ such that for stepsizes
τ ≤ τ0 and Nτ ≤ T , the fully and linearly implicit BDF methods (2.2) and (2.3),
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respectively, of order k ≤ 5, have unique numerical solutions un ∈ C1(Ω)∩H2(Ω)∩
H1

0 (Ω) with errors bounded by

max
k≤n≤N

(
‖un − u(tn)‖L∞(Ω) + ‖∇un −∇u(tn)‖L∞(Ω)

)
≤ Cτk,(2.6)

(
τ

N∑
n=k

‖un − u(tn)‖2H2(Ω)

)1/2

≤ Cτk.(2.7)

Let us first comment on the regularity requirements. With some q > d, we need
to assume in Theorem 2.1 that

(2.8) u ∈ Ck+1
(
[0, T ];W−1,q(Ω)

)
∩ Ck

(
[0, T ];Lq(Ω)

)
∩ C

(
[0, T ];W 1,q(Ω)

)
,

and in Theorem 2.2 that

(2.9) u ∈ Ck+1
(
[0, T ];Lq(Ω)

)
∩ Ck

(
[0, T ];W 1,q(Ω)

)
∩ C

(
[0, T ];W 2,q(Ω)

)
.

The errors in the initial data en = un − u(tn), for n = 0, . . . , k − 1, need to satisfy
the following bounds: in Theorem 2.1,

(2.10)

(
τ

k−1∑
n=1

∥∥∥en − en−1

τ

∥∥∥p
W−1,q(Ω)

) 1
p

+

(
τ

k−1∑
n=1

‖en‖pW 1,q(Ω)

) 1
p

≤ Cτk,

for some p such that 2/p+ d/q < 1, and similarly in Theorem 2.2 with

(2.11)

(
τ

k−1∑
n=1

∥∥∥en − en−1

τ

∥∥∥p
Lq(Ω)

) 1
p

+

(
τ

k−1∑
n=1

‖en‖pW 2,q(Ω)

) 1
p

≤ Cτk.

It can be shown that these bounds are satisfied when the starting values are obtained
with an algebraically stable implicit Runge–Kutta method of stage order k, such
as the k-stage Radau collocation method.

Error bounds for BDF time discretizations of quasilinear parabolic differential
equations have previously been obtained by Zlámal [25], for k ≤ 2, and by Akrivis
& Lubich [4] for k ≤ 5, using energy estimates. Implicit–explicit multistep methods
for a particular class of such equations have been analyzed by Akrivis, Crouzeix
& Makridakis [2] by spectral and Fourier techniques. In those papers it is, how-
ever, assumed that the operators A(u) are uniformly elliptic for u ∈ H1

0 (Ω), which
amounts to assuming that the coefficient function a is bounded on all R and has a
strictly positive lower bound on all R. This is a restrictive assumption that is not
satisfied in many applications.

This restriction can be overcome only by controlling the maximum norm of
the numerical solution, which is a major contribution of the present paper. Since
no maximum principle is available for the BDF methods of order higher than 1,
the boundedness of the numerical solution is not obvious. While there are some
results on maximum norm error bounds for implicit Euler and Crank–Nicolson time
discretizations of linear parabolic equations by Schatz, Thomée & Wahlbin [21], we
are not aware of any such results for quasilinear parabolic equations as studied here.

In our view, even more interesting than the above particular results is the novel
technique by which they are proved: by combining discrete maximal regularity and
energy estimates. The combination of these techniques will actually yield O(τk)
error bounds in somewhat stronger norms than stated in Theorems 2.1 and 2.2.
Moreover, we provide a concise abstract framework in which the combination of
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maximal regularity and energy estimates can be done and which allows for a com-
mon proof for both Theorems 2.1 and 2.2, as well as for extensions to more general
quasilinear parabolic problems than (2.1) and to full discretizations.

3. Abstract framework and basic approach in continuous time

As a preparation for the proof of Theorems 2.1 and 2.2, it is helpful to illustrate
the approach taken in this paper first in a time-continuous and more abstract
setting, which in particular applies to A(w)u = −∇·(a(w)∇u) as considered above.

3.1. Abstract framework. We formulate an abstract setting that works with
Hilbert spaces V ⊂ H and Banach spaces D ⊂ W ⊂ X as follows: Let H be the
basic Hilbert space, and let V be another Hilbert space that is densely and contin-
uously imbedded in H. Together with the dual spaces we then have the familiar
Gelfand triple of Hilbert spaces V ⊂ H = H ′ ⊂ V ′ with dense and continuous
imbeddings, and such that the restriction to V ×H of the duality pairing 〈·, ·〉 be-
tween V and V ′ and of the inner product (·, ·) on H coincide. Further, let X ⊂ V ′

be a Banach space and let D ⊂ W ⊂ X be further Banach spaces. We denote the
corresponding norms by ‖ · ‖H , ‖ · ‖V , ‖ · ‖X , ‖ · ‖W , and ‖ · ‖D, respectively, and
summarize the continuous imbeddings:

V ⊂ H ⊂ V ′

∪ ∪ ∪
D ⊂ W ⊂ X

For the existence of the numerical solution of the fully implicit BDF method we
will further require that D is compactly imbedded in W .

We have primarily the following two situations in mind:

(P1) For a bounded Lipschitz domain Ω ⊂ R
d (with d ≤ 3) we consider the usual

Hilbert spaces H = L2(Ω) and V = H1
0 (Ω), and in addition the Banach

spaces X = W−1,q(Ω) for suitable q > d, W = Cα(Ω) with a small α > 0,
and D = W 1,q(Ω) ∩H1

0 (Ω).
(P2) For a smooth bounded domain Ω ⊂ Rd (with arbitrary dimension d) we

consider again the Hilbert spaces H = L2(Ω) and V = H1
0 (Ω), and the

Banach spaces X = Lq(Ω) with q > d, W = C1,α(Ω) with a small α > 0, and
D = W 2,q(Ω) ∩H1

0 (Ω).

We will work with the following five conditions:
(i) (W -locally uniform maximal regularity) For w ∈ W , the linear operator

−A(w) is the generator of an analytic semigroup on X with domain D(A(w)) = D
independent of w, and has maximal Lp-regularity: for 1 < p < ∞ there exists a
real Cp(w) such that the solution of the inhomogeneous initial value problem

(3.1) u̇(t) +A(w)u(t) = f(t) (0 < t ≤ T ), u(0) = 0,

is bounded by

‖u̇‖Lp(0,T ;X) + ‖A(w)u‖Lp(0,T ;X) ≤ Cp(w)‖f‖Lp(0,T ;X) ∀f ∈ Lp(0, T ;X).

Moreover, the bound is uniform in bounded sets of W : for every R > 0,

Cp(w) ≤ Cp,R if ‖w‖W ≤ R.

We further require that the graph norms ‖·‖X+‖A(w)·‖X are uniformly equivalent
to the norm ‖ · ‖D for ‖w‖W ≤ R.
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(ii) (Control of the W -norm by maximal regularity) For some 1 < p < ∞, we
have a continuous imbedding W 1,p(0, T ;X) ∩ Lp(0, T ;D) ⊂ L∞(0, T ;W ): there is
Cp < ∞ such that for all u ∈ W 1,p(0, T ;X) ∩ Lp(0, T ;D),

‖u‖L∞(0,T ;W ) ≤ Cp

(
‖u̇‖Lp(0,T ;X) + ‖u‖Lp(0,T ;D)

)
.

(iii) (V -ellipticity) A(w) extends by density to a bounded linear operator A(w) :
V → V ′, and for all w ∈ W with W -norm bounded by R, the operator A(w) is
uniformly V -elliptic:

αR‖u‖2V ≤ 〈u,A(w)u〉 ≤ MR‖u‖2V ∀u ∈ V

with αR > 0 and MR < ∞, where 〈·, ·〉 denotes the duality pairing between V
and V ′.

(iv) (Operators with different arguments: X-norm estimate) For every ε > 0,
there is Cε,R < ∞ such that for all v, w ∈ W that are bounded by R in the
W -norm, and for all u ∈ D,

‖(A(v)−A(w))u‖X ≤
(
ε ‖v − w‖W + Cε,R ‖v − w‖H

)
‖u‖D.

(v) (Operators with different arguments: V ′-norm estimate) For every ε > 0,
there is Cε,R < ∞ such that for all v, w ∈ W that are bounded by R in the
W -norm, and for all u ∈ D,

‖(A(v)−A(w))u‖V ′ ≤
(
ε‖v − w‖V + Cε,R ‖v − w‖H

)
‖u‖D.

Lemma 3.1. The operators given by A(w)u = −∇ · (a(w)∇u) with homogeneous
Dirichlet boundary conditions and a smooth positive function a(·) satisfy (i)–(v) in
the situations (P1) and (P2) above.

The proof of this lemma will be given in Section 8 and Section 9. In the cases
(P1) and (P2) we actually have a stronger bound than (v):

‖(A(v)−A(w))u‖V ′ ≤ CR ‖v − w‖H ‖u‖D.

3.2. A perturbation result. Suppose now that u ∈ W 1,p(0, T ;X) ∩ Lp(0, T ;D)
solves

(3.2)

{
u̇(t) + A(u(t))u(t) = f(t), 0 < t ≤ T,

u(0) = u0,

and u� ∈ W 1,∞(0, T ;W ) ∩ Lp(0, T ;D) solves the perturbed equation

(3.3)

{
u̇�(t) +A(u�(t))u�(t) = f(t) + d(t), 0 < t ≤ T,

u�(0) = u0,

where the defect d is bounded by

(3.4) ‖d‖Lp(0,T ;X) ≤ δ.

As an illustration of the combined use of maximal Lp-regularity and energy
estimates we prove the following result. Theorems 2.1 and 2.2 will be proved by
transferring these arguments to the time-discrete setting.
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Proposition 3.1. In the above setting of (i)–(v) and (3.2)–(3.4) with δ > 0 suf-
ficiently small, the error e = u − u� between the solutions of (3.2) and (3.3) is
bounded by

‖ė‖Lp(0,T ;X) + ‖e‖Lp(0,T ;D) ≤ Cδ,

‖e‖L∞(0,T ;W ) ≤ Cδ,

where C depends on ‖u�‖W 1,∞(0,T ;W ) and ‖u�‖Lp(0,T ;D), but is independent of δ.

Proof. (a) (Error equation) We rewrite the equation in (3.2) in the form

u̇(t) +A(u�(t))u(t) =
(
A(u�(t))−A(u(t))

)
u(t) + f(t)

and see that the error e = u− u� satisfies the error equation

(3.5) ė(t) +A(u�(t))e(t) =
(
A(u�(t))−A(u(t))

)
u(t)− d(t).

Obviously, e(0) = 0. To simplify the notation, we denote Ā(t) := A(u�(t)), and
rewrite the error equation with some arbitrary t̄ ≥ t as

(3.6) ė(t) + Ā(t̄)e(t) =
(
Ā(t̄)− Ā(t)

)
e(t) +

(
A(u�(t))−A(u(t))

)
u(t)− d(t),

i.e.,

(3.7) ė(t) + Ā(t̄)e(t) = d̂(t),

with

(3.8) d̂(t) :=
(
Ā(t̄)− Ā(t)

)
e(t)−

(
A(u�(t))−A(u(t))

)
u(t)− d(t).

(b) (Maximal regularity) We denote

R = ‖u�‖L∞(0,T ;W ) + 1 and B = ‖u�‖Lp(0,T ;D) + 1

and let 0 < t∗ ≤ T be maximal such that

(3.9) ‖u‖L∞(0,t∗;W ) ≤ R and ‖u‖Lp(0,t∗;D) ≤ B.

By the maximal Lp-regularity (i) we immediately obtain from (3.7) for t̄ ≤ t∗

(3.10) ‖ė‖Lp(0,t̄;X) + ‖e‖Lp(0,t̄;D) ≤ Cp,R ‖d̂‖Lp(0,t̄;X).

By the bound (iv) and the assumed Lipschitz continuity of u� : [0, T ] → W , we
have for any ε > 0

‖d̂(t)‖X ≤ C(t̄− t)‖e(t)‖D(3.11)

+ ε ‖e(t)‖W ‖u(t)‖D + Cε,R ‖e(t)‖H ‖u(t)‖D + ‖d(t)‖X .

We take the second term on the left-hand side of (3.10) to power p and denote it
by

η(t) = ‖e‖pLp(0,t;D) .

For the first term on the right-hand side of (3.11) we note that, by partial integra-
tion, ∫ t̄

0

(t̄− t)p ‖e(t)‖pD dt = p

∫ t̄

0

(t̄− t)p−1η(t) dt.
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Hence we have from (3.10)

η(t̄) ≤ Cp
p,R‖d̂‖

p
Lp(0,t̄;X)

≤ C

∫ t̄

0

(t̄− t)p−1η(t) dt

+ C
(
εB‖e‖L∞(0,t̄;W ) + Cε,RB‖e‖L∞(0,t̄;H) + ‖d‖Lp(0,t̄;X)

)p

.

With a Gronwall inequality, we therefore obtain from (3.10)

‖ė‖Lp(0,t̄;X) + ‖e‖Lp(0,t̄;D) ≤ Cε‖e‖L∞(0,t̄;W ) + Cε,R,B‖e‖L∞(0,t̄;H) + C‖d‖Lp(0,t̄;X),

and we note that by property (ii) the left-hand term dominates ‖e‖L∞(0,t̄;W ). For
sufficiently small ε we can therefore absorb the first term of the right-hand side in
the left-hand side to obtain

(3.12) ‖ė‖Lp(0,t∗;X) + ‖e‖Lp(0,t∗;D) ≤ C‖e‖L∞(0,t∗;H) + Cδ.

(c) (Energy estimate) To bound the first term on the right-hand side of (3.12)
we use the energy estimate obtained by testing (3.5) with e:

1

2

d

dt
‖e(t)‖2H + 〈e(t), A(u�(t))e(t)〉 =

〈
e(t), (A(u�(t))−A(u(t)))u(t)

〉
− 〈e(t), d(t)〉.

The bound of (v) yields〈
e, (A(u�)−A(u))u

〉
≤ ‖e‖V

(
ε‖e‖V + Cε,R‖e‖H

)
‖u‖D

≤
(
2ε‖e‖2V + Cε,R‖e‖2H

)
‖u‖D.

Integrating from 0 to t ≤ t∗, using the V -ellipticity (iii) and absorbing the term
with ‖e‖2V , we therefore obtain

‖e(t)‖2H +

∫ t

0

‖e(s)‖2V ds ≤ C

∫ t

0

‖e(s)‖2H ds+ C

∫ t

0

‖d(s)‖2V ′ ds,

and the Gronwall inequality then yields

‖e(t)‖H ≤ Cδ, 0 ≤ t ≤ t∗.

(d) (Complete time interval) Inserting the previous bound in (3.12), we obtain

‖ė‖Lp(0,t∗;X) + ‖e‖Lp(0,t∗;D) ≤ Cδ,

which by (ii) further implies

‖e‖L∞(0,t∗;W ) ≤ Cδ.

Hence, for sufficiently small δ we have the strict inequalities

‖u‖L∞(0,t∗;W ) < R and ‖u‖Lp(0,t∗;D) < B.

In view of the maximality of t∗ with (3.9) this is possible only if t∗ = T . �

Remark 3.1. If condition (ii) is strengthened to

‖u‖Cα([0,T ];W ) ≤ Cα,p

(
‖u̇‖Lp(0,T ;X) + ‖u‖Lp(0,T ;D)

)
,

with some α > 0, then the statement of Proposition 3.1 remains valid under the
weaker condition u, u� ∈ W 1,p(0, T ;X) ∩ Lp(0, T ;D), which is symmetric in u
and u�. The proof remains essentially the same.
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4. Stability estimate for BDF methods

4.1. Abstract framework for the time discretization. We work again with
the abstract framework (i)–(v) of the previous section and consider in addition the
following property of the BDF time discretization. Here we denote for a sequence
(vn)

N
n=1 and a given stepsize τ∥∥(vn)Nn=1

∥∥
Lp(X)

=
(
τ

N∑
n=1

‖vn‖pX
)1/p

,

which is the Lp(0, Nτ ;X) norm of the piecewise constant function taking the val-
ues vn. We will work with the following discrete analog of condition (i).

(i’) (W -locally uniform discrete maximal regularity) For w ∈ W , the linear opera-
tor −A(w) has discrete maximal Lp-regularity for the BDF method: for 1 < p < ∞
there exists a real Cp(w) such that for every stepsize τ > 0 the numerical solution
determined by

(4.1) u̇n +A(w)un = fn (k ≤ n ≤ N) with u̇n =
1

τ

k∑
j=0

δjun−j

for starting values u0 = · · · = uk−1 = 0, is bounded by∥∥(u̇n)
N
n=k

∥∥
Lp(X)

+
∥∥(A(w)un)

N
n=k

∥∥
Lp(X)

≤ Cp(w)
∥∥(fn)Nn=k

∥∥
Lp(X)

,

where the constant is independent of N and τ . Moreover, the bound is uniform in
bounded sets of W : for every R > 0,

Cp(w) ≤ Cp,R if ‖w‖W ≤ R.

Lemma 4.1. For the operators given by A(w)u = −∇·(a(w)∇u) with homogeneous
Dirichlet boundary conditions and a smooth positive function a(·) and the BDF
methods up to order k ≤ 6, the uniform discrete maximal regularity property (i’) is
fulfilled in the situations (P1) and (P2) of the previous section.

The proof of this lemma will be given in Section 8.2. We note that for a fixed w,
such a result was first proved in [14] for X = Lq. The main novelty of Lemma 4.1
is thus the case X = W−1,q and the local W -uniformity of the result.

For the BDF methods of orders k = 3, 4, 5, we need a further condition that
complements (v):

(v’) For all v, w ∈ W that are bounded by R in the W -norm, and for all u ∈ V ,

‖(A(v)−A(w))u‖V ′ ≤ CR ‖v − w‖W ‖u‖V .
This condition is trivially satisfied in the situations (P1) and (P2).

4.2. Stability estimate. In the following, let ûn = un for the fully implicit BDF

method and ûn =
∑k−1

j=0 γjun−j−1 for the linearly implicit BDF method.

Suppose now that un, u
�
n ∈ D (n = 0, . . . , N) solve

(4.2) u̇n +A(ûn)un = fn, k ≤ n ≤ N,

and the perturbed equation

(4.3) u̇�
n +A(û�

n)u
�
n = fn + dn, k ≤ n ≤ N,

respectively, where it is further assumed that

(4.4) ‖u�
m − u�

n‖W ≤ L(m− n)τ, 0 ≤ n ≤ m ≤ N,



1536 GEORGIOS AKRIVIS, BUYANG LI, AND CHRISTIAN LUBICH

and the defect (dn) is bounded by

(4.5)
∥∥(dn)Nn=k

∥∥
Lp(X)

≤ δ

and the errors of the starting values are bounded by

(4.6)
1

τ

∥∥(ui − u�
i )

k−1
i=0

∥∥
Lp(X)

≤ δ.

We then have the following time-discrete version of Proposition 3.1.

Proposition 4.1. Consider time discretization by a fully implicit or linearly im-
plicit BDF method of order k ≤ 5. In the above setting of the W -locally uniform
discrete maximal regularity (i’) and (ii)–(v) (and additionally (v’) if k = 3, 4, 5 )
and (4.2)–(4.6), there exist δ0 > 0 and τ0 > 0 such that for δ ≤ δ0 and τ ≤ τ0, the
errors en = un − u�

n between the solutions of (4.2) and (4.3) are bounded by∥∥(ėn)Nn=k

∥∥
Lp(X)

+
∥∥(en)Nn=k

∥∥
Lp(D)

≤ Cδ,∥∥(en)Nn=k

∥∥
L∞(W )

≤ Cδ,

where C depends on ‖(u�
n)

N
n=0‖L∞(W ) and ‖(u�

n)
N
n=0‖Lp(D) and on L of (4.4), but

is independent of δ and of N and τ with Nτ ≤ T .

This stability result will be proved in this and the next section.

4.3. Auxiliary results by Dahlquist and Nevanlinna & Odeh. We will prove
Proposition 4.1 for the linearly implicit scheme similarly to the proof of Proposi-
tion 3.1. To be able to use energy estimates in the time-discrete setting of BDF
methods, we need the following auxiliary results.

Lemma 4.2 (Dahlquist [9]; see also [6] and [12, Section V.6]). Let δ(ζ) = δkζ
k +

· · ·+ δ0 and μ(ζ) = μkζ
k + · · ·+μ0 be polynomials of degree at most k (and at least

one of them of degree k) that have no common divisor. Let (·, ·) be an inner product
with associated norm | · |. If

Re
δ(ζ)

μ(ζ)
> 0 for |ζ| < 1,

then there exists a positive definite symmetric matrix G = (gij) ∈ R
k×k and real

κ0, . . . , κk such that for v0, . . . , vk in the real inner product space,( k∑
i=0

δivk−i,

k∑
j=0

μjvk−j

)
=

k∑
i,j=1

gij(vi, vj)−
k∑

i,j=1

gij(vi−1, vj−1) +
∣∣∣ k∑
i=0

κivi

∣∣∣2.
In combination with the preceding result for the multiplier μ(ζ) = 1 − θkζ, the

following property of BDF methods up to order 5 becomes important.

Lemma 4.3 (Nevanlinna & Odeh [19]). For k ≤ 5, there exists 0 ≤ θk < 1 such

that for δ(ζ) =
∑k

�=1
1
� (1− ζ)�,

Re
δ(ζ)

1− θkζ
> 0 for |ζ| < 1.

The smallest possible values of θk are

θ1 = θ2 = 0, θ3 = 0.0836, θ4 = 0.2878, θ5 = 0.8160.
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Precise expressions for the optimal multipliers for the BDF methods of orders 3,
4, and 5 are given by Akrivis & Katsoprinakis [3].

An immediate consequence of Lemma 4.3 and Lemma 4.2 is the relation

(4.7)
( k∑

i=0

δivk−i, vk − θkvk−1

)
≥

k∑
i,j=1

gij(vi, vj)−
k∑

i,j=1

gij(vi−1, vj−1)

with a positive definite symmetric matrix G = (gij) ∈ R
k×k; it is this inequality

that will play a crucial role in our energy estimates.

4.4. Proof of Proposition 4.1 for the linearly implicit BDF methods. We
subdivide the proof into four parts (a) to (d) that are analogous to the corresponding
parts in the proof of Proposition 3.1. Parts (a)–(c) apply to both the linearly and
fully implicit BDF methods, whereas the argument in part (d) does not work for
the fully implicit method.

(a) (Error equation) We rewrite the equation for un in the form

u̇n +A(û�
n)un =

(
A(û�

n)−A(ûn)
)
un + fn

and see that the errors en = un − u�
n satisfy the error equation, for n ≤ N ,

(4.8) ėn +A(û�
n)en =

(
A(û�

n)−A(ûn)
)
un − dn.

We abbreviate An = A(û�
n). For an arbitrary m ≤ N and for k ≤ n ≤ m we further

have the error equation with a fixed operator

(4.9) ėn +Amen = d̂n := (Am −An)en +
(
A(û�

n)−A(ûn)
)
un − dn.

If we redefine e0 = · · · = ek−1 = 0, then there appear extra defects for n =
k, . . . , 2k − 1, which are bounded by δ by condition (4.6) and are subsumed in dn
in the following.

(b) (Maximal regularity) We denote

(4.10) R = ‖(u�
n)

N
n=0‖L∞(W ) + 1 and B = ‖(u�

n)
N
n=0‖Lp(D) + 1,

and let M ≤ N be maximal such that

(4.11) ‖(un)
M−1
n=0 ‖L∞(W ) ≤ R and ‖(un)

M−1
n=0 ‖Lp(D) ≤ B.

By the discrete maximal Lp-regularity (i’) we obtain from (4.9) that

(4.12)
∥∥(ėn)mn=k

∥∥
Lp(X)

+
∥∥(en)mn=k

∥∥
Lp(D)

≤ Cp,R

∥∥(d̂n)mn=k

∥∥
Lp(X)

,

and by the bounds (iv) and (4.4), we have, for any ε > 0,

‖d̂n‖X ≤ ‖dn‖X + CRL(m− n)τ‖en‖D(4.13)

+ ε ‖en‖W ‖un‖D + Cε,R ‖en‖H ‖un‖D for k ≤ n ≤ m ≤ M.

We take the second term on the left-hand side of (4.12) to power p and denote it
by

ηm =
∥∥(en)mn=k

∥∥p
Lp(D)

.
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For the second term on the right-hand side of (4.13) we note that, by partial
summation,

τ
m∑

n=k

(m− n)pτp ‖en‖pD = τ
m−1∑
n=k

(
(m− n)p − (m− n− 1)p)τp−1 ηn

≤ Cτ
m∑

n=k

(
(m− n)τ

)p−1
ηn.

Hence we have from (4.12)

ηm ≤ Cp
p,R

∥∥(d̂n)mn=k

∥∥p
Lp(X)

≤ Cτ
m∑

n=k

(
(m− n)τ

)p−1
ηn

+ C
(
εB‖(en)mn=k‖L∞(W ) + CB‖(en)mn=k‖L∞(H) +

∥∥(dn)mn=k

∥∥
Lp(X)

)p

.

With a discrete Gronwall inequality, we therefore obtain from (4.12) that∥∥(ėn)Mn=k

∥∥
Lp(X)

+
∥∥(en)Mn=k

∥∥
Lp(D)

≤ Cε‖(en)Mn=k‖L∞(W )(4.14)

+ C‖(en)Mn=k‖L∞(H) + C
∥∥(dn)Mn=k

∥∥
Lp(X)

.

Next we show that by property (ii) the left-hand side dominates ‖(en)Mn=k‖L∞(W ).
We write δ(ζ) = (1 − ζ)μ(ζ), where the polynomial μ(ζ) of degree k − 1 has no
zeros in the closed unit disk and, therefore,

1

μ(ζ)
=

∞∑
n=0

χn ζ
n, where |χn| ≤ ρn with ρ < 1.

It follows that

en − en−1

τ
=

n∑
j=0

ėn−j χj

and ∥∥∥(en − en−1

τ

)M

n=k

∥∥∥
Lp(X)

≤ C
∥∥(ėn)Mn=k

∥∥
Lp(X)

.

If we denote by e(t) the piecewise linear function that interpolates the values en,
then we have

‖ė‖Lp(0,Mτ ;X) =
∥∥∥(en − en−1

τ

)M

n=k

∥∥∥
Lp(X)

and

‖e‖Lp(0,Mτ ;D) ≤ C
∥∥(en)Mn=k

∥∥
Lp(D)

.

Combining the above inequalities and using property (ii) for e(t), we thus obtain

‖(en)Mn=k‖L∞(W ) ≤ C
(∥∥(ėn)Mn=k

∥∥
Lp(X)

+
∥∥(en)Mn=k

∥∥
Lp(D)

)
.

For sufficiently small ε we can therefore absorb the first term of the right-hand side
of (4.14) in the left-hand side to obtain

(4.15)
∥∥(ėn)Mn=k

∥∥
Lp(X)

+
∥∥(en)Mn=k

∥∥
Lp(D)

≤ C‖(en)Mn=k‖L∞(H) + Cδ.
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(c) (Energy estimate) To bound the first term on the right-hand side of (4.15)
we use the energy estimate obtained by testing (4.8) with en−θken−1 with θk from
Lemma 4.3:

(4.16)
1

τ

(
en−θken−1,

k∑
j=0

δjen−j

)
+〈en, Anen〉−θk〈en−1, Anen〉 = 〈en−θken−1, d̃n〉

with

d̃n =
(
A(û�

n)−A(ûn)
)
un − dn.

Now, with the notation En := (en, . . . , en−k+1)
T and the norm |En|G given by

|En|2G =

k∑
i,j=1

gij(en−k+i, en−k+j),

using (4.7), we can estimate the first term on the left-hand side from below in the
form

(4.17)
(
en − θken−1,

k∑
j=0

δjen−j

)
≥ |En|2G − |En−1|2G.

In the following we denote by ‖ · ‖n the norm given by ‖v‖2n = 〈v,Anv〉, which by
(iii) is equivalent to the V -norm. Furthermore,

〈en − θken−1, Anen〉 = ‖en‖2n − θk〈en−1, Anen〉,
whence, obviously,

(4.18) 〈en − θken−1, Anen〉 ≥
(
1− θk

2

)
‖en‖2n − θk

2
‖en−1‖2n.

Moreover,

(4.19) 〈en − θken−1, d̃n〉 ≤ ε(‖en‖2n + θ2k‖en−1‖2n−1) + Cε‖d̃n‖2V ′ ,

for any positive ε. At this point, we need to relate ‖en−1‖n back to ‖en−1‖n−1. We
have, by the bounds (v’) and (4.4),

‖v‖2n − ‖v‖2n−1 = 〈v,Anv〉 − 〈v,An−1v〉 = 〈v, (An −An−1)v〉 ≤ Cτ‖v‖2V ,
so that

(4.20) ‖en−1‖2n ≤ (1 + Cτ )‖en−1‖2n−1.

Summing in (4.16) from n = k to m ≤ M, we obtain

|Em|2G + ρτ

m∑
n=k

‖en‖2n ≤ Cετ

m∑
n=k

‖d̃n‖2V ′ ,

with ρ := 1− θk − (1 + θk)ε > 0.

To estimate d̃n, we note that the bound of (v) yields

‖(A(û�
n)−A(ûn))un‖V ′ ≤

k∑
j=0

(
ε‖en−j‖V + Cε,R‖en−j‖H

)
‖un‖D

≤
k∑

j=0

(
2ε‖en−j‖2V + C‖en−j‖2H

)
‖un‖D.
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Absorbing the terms with ‖en−j‖2V we therefore obtain, for k ≤ m ≤ M ,

‖em‖2H + τ

m∑
n=k

‖en‖2V ≤ Cτ

m∑
n=k

‖en‖2H + Cτ

m∑
n=k

‖dn‖2V ′ ,

and the discrete Gronwall inequality then yields

‖en‖H ≤ Cδ, k ≤ n ≤ M.

(d) (Complete time interval) Inserting the previous bound in (4.15), we obtain∥∥(ėn)Mn=k

∥∥
Lp(X)

+
∥∥(en)Mn=k

∥∥
Lp(D)

≤ Cδ,

which by (ii) and the argument in part (b) above further implies∥∥(en)Mn=k

∥∥
L∞(W )

≤ Cδ.

For the linearly implicit BDF method, this implies that ûM+1 =
∑k−1

j=0 γjuM−j is

bounded by ‖ûM+1‖W ≤ CR, and hence the above arguments can be repeated to
yield that for sufficiently small δ the bounds (4.11) are also satisfied for M + 1,
which contradicts the maximality of M unless M = N . �

While parts (a)–(c) of the above proof apply also to the fully implicit BDF
methods, the argument in part (d) does not work for the fully implicit method.
Here we need some a priori estimate from the existence proof, which is established
in the next section.

5. Existence of numerical solutions for the fully implicit scheme

While existence and uniqueness of the numerical solution are obvious for the
linearly implicit BDF method (2.3), this is not so for the fully implicit method. In
this section, we prove existence and uniqueness of the numerical solution for the
fully implicit BDF method (2.2) and complete the proof of Proposition 4.1 for this
method.

5.1. Schaefer’s fixed point theorem. Existence of the solution of the fully im-
plicit BDF method (2.2) is proved with the following result.

Lemma 5.1 (Schaefer’s fixed point theorem [11, Chapter 9.2, Theorem 4]). Let W
be a Banach space and let M : W → W be a continuous and compact map. If the
set

(5.1)
{
φ ∈ W : φ = θM(φ) for some θ ∈ [0, 1]

}
is bounded in W , then the map M has a fixed point.

5.2. Proof of the existence of the numerical solution and of Proposi-
tion 4.1 for fully implicit BDF methods. In the situation of Proposition 4.1,
we assume that un ∈ D,n = k, . . . ,M − 1, are solutions of (2.2) and satisfy

(5.2) ‖(un)
M−1
n=0 ‖L∞(W ) ≤ R,

with R of (4.10), and prove existence of a numerical solution uM for (2.2), which
also satisfies ‖uM‖W ≤ R.

We define a map M : W → W in the following way. For any φ ∈ W we define

(5.3) ρφ := min

( √
δ

‖φ‖W
, 1

)
.
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Clearly, ρφ depends continuously on φ ∈ W , and

(5.4) ‖ρφφ‖W ≤
√
δ.

Then we define eM = M(φ) as the solution of the linear equation

(5.5)

1

τ

k∑
j=0

δjeM−j = A(u�
M )eM + (A(u�

M + ρφφ)−A(u�
M ))eM

+ (A(u�
M + ρφφ)−A(u�

M ))u�
M − dM .

Using the compact imbedding of D in W , the fact that the resolvent operator
(δ0/τ +A(u�

M + ρφφ))
−1 maps from X to D, and condition (iv) (with ε = 1), it is

shown that the map M is continuous and compact. Moreover, if the map M has
a fixed point φ with ρφ = 1, then eM = M(φ) is a solution of

(5.6)

1

τ

k∑
j=0

δjeM−j = A(u�
M )eM + (A(u�

M + eM )−A(u�
M ))eM

+ (A(u�
M + eM )−A(u�

M ))u�
M − dM ,

and uM := u�
M + eM is the solution of (2.2) with n = M .

To apply Schaefer’s fixed point theorem, we assume that φ ∈ W and φ = θM(φ)
for some θ ∈ [0, 1]. To prove existence of a fixed point for the map M, we only
need to prove that all such ‖φ‖W are uniformly bounded.

Let eM = M(φ). Then φ = θeM and (5.5) implies that eM is the solution of

(5.7)

1

τ

k∑
j=0

δjeM−j = A(u�
M )eM + (A(u�

M + θρφeM )−A(u�
M ))eM

+ (A(u�
M + θρφeM )−A(u�

M ))u�
M − dM

and

(5.8)

1

τ

k∑
j=0

δjen−j = A(u�
n)en + (A(u�

n + en)−A(u�
n))en

+ (A(u�
n + en)−A(u�

n))u
�
n − dn

for n = k, . . . ,M − 1, satisfying

(5.9) ‖θρφeM‖W ≤
√
δ.

In the same way as in Section 4.4, we obtain

(5.10) ‖(ėn)Mn=k‖Lp(X) + ‖(en)Mn=k‖Lp(D) ≤ Cδ

and

(5.11) ‖(en)Mn=0‖L∞(W ) ≤ Cδ.

Since φ = θeM with θ ∈ [0, 1], the last inequality implies uniform boundedness of
‖φ‖W with respect to θ ∈ [0, 1], and this implies the existence of a fixed point φ for
the map M by Lemma 5.1. Moreover, in view of (5.11) and since the fixed point
φ satisfies φ = eM , for sufficiently small δ we have

(5.12) ‖φ‖W ≤
√
δ, and so ρφ = 1.
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This proves the existence of a solution of (2.2) for sufficiently small δ, and that the
solution satisfies (5.10) and (5.11) and hence also ‖uM‖W ≤ R, which completes
the proof of Proposition 4.1 for the fully implicit BDF methods. �

5.3. Uniqueness of the numerical solution. Suppose that there are two nu-
merical solutions un, ũn ∈ D of (2.2), both with W -norm bounded by R as in the
proof of existence. By induction, we assume unique numerical solutions uj with
W -norm bounded by R for j < n. The difference en = un − ũn then satisfies the
equation

δ0
τ

en +A(ũn)en =
(
A(un)−A(ũn)

)
un.

We test this equation with en and note that, with some αR > 0 depending on R,
we have, using conditions (iii) and (v),

δ0
τ

‖en‖2H + αR‖en‖2V ≤ ‖en‖V
(
ε‖en‖V + Cε,R‖en‖H

)
‖un‖D,

which implies that there exists τR > 0 such that for τ ≤ τR, we have en = 0. We
have thus shown uniqueness of the numerical solution un ∈ D with ‖un‖W ≤ R for
stepsizes τ ≤ τR.

6. Consistency error

The order of both the k-step fully implicit BDF method, described by the coeffi-
cients δ0, . . . , δk and 1, and of the explicit k-step BDF method, that is, the method
described by the coefficients δ0, . . . , δk and γ0, . . . , γk−1, is k, i.e.,

(6.1)

k∑
i=0

(k − i)�δi = �k�−1 = �

k−1∑
i=0

(k − i− 1)�−1γi, � = 0, 1, . . . , k.

The defects (consistency errors) dn and d̃n of the schemes (2.2) and (2.3) for the
solution u of (2.1), i.e., the amounts by which the exact solution misses satisfying
(2.2) and (2.3), respectively, are given by

(6.2) dn =
1

τ

k∑
j=0

δju(tn−j) +A(u(tn))u(tn)

and

(6.3) d̃n =
1

τ

k∑
j=0

δju(tn−j) +A
( k−1∑

j=0

γju(tn−j−1)
)
u(tn),

n = k, . . . , N, respectively.

Lemma 6.1. Under the regularity requirements (2.8) or (2.9), the defects dn and

d̃n are bounded by

(6.4) max
k≤n≤N

‖dn‖W−1,q(Ω) ≤ Cτk, max
k≤n≤N

‖d̃n‖W−1,q(Ω) ≤ Cτk

in the case of (2.8), and by

(6.5) max
k≤n≤N

‖dn‖Lq(Ω) ≤ Cτk, max
k≤n≤N

‖d̃n‖Lq(Ω) ≤ Cτk

in the case of (2.9).
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Proof. Since the proofs for (6.4) and (6.5) are almost identical, we just present the
proof of (6.5). We first focus on the implicit scheme (2.2). Using the differential
equation in (2.1), we rewrite (6.2) in the form

(6.6) dn =
1

τ

k∑
j=0

δju(tn−j)− ∂tu(tn).

By Taylor expanding about tn−k, we see that, due to the order conditions of the
implicit BDF method, i.e., the first equality in (6.1), leading terms of order up to
k − 1 cancel, and we obtain

dn =
1

k!

[
1

τ

k∑
j=0

δj

∫ tn−j

tn−k

(tn−j − s)ku(k+1)(s) ds

− k

∫ tn

tn−k

(tn − s)k−1u(k+1)(s) ds

]
;

(6.7)

here, we used the notation u(m) := ∂mu
∂tm . Taking the Lq norm on both sides of (6.7),

we obtain the desired optimal order consistency estimate (6.5) for the scheme (2.2).
Next, concerning the scheme (2.3), from (6.2) and (6.3) we immediately obtain

the following relation between d̃n and dn

(6.8) d̃n = dn +
(
A(u(tn))− A(û(tn))

)
u(tn)

with

(6.9) û(tn) :=

k−1∑
i=0

γiu(tn−i−1).

By Taylor expanding about tn−k, the leading terms of order up to k − 1 cancel
again, this time due to the second equality in (6.1), and we obtain

u(tn)− û(tn) =
1

(k − 1)!

[∫ tn

tn−k

(tn − s)k−1u(k)(s)ds

−
k−1∑
j=0

γj

∫ tn−j−1

tn−k

(tn−j−1 − s)k−1u(k)(s)ds

]
,

whence, taking the W 1,q norm on both sides of this relation, we immediately infer
that

(6.10) ‖u(tn)− û(tn)‖W 1,q(Ω) ≤ Cτk.

Now,
(
A(u(tn))−A(û(tn))

)
u(tn) = ∇ ·

((
a(u(tn))− a(û(tn))

)
∇u(tn)

)
, whence

‖
(
A(u(tn))−A(û(tn))

)
u(tn)‖Lq(Ω)

= ‖∇ ·
(
(a(u(tn))− a(û(tn)))∇u(tn)

)
‖Lq(Ω)

≤ C‖a(u(tn))− a(û(tn))‖L∞(Ω)‖u(tn)‖W 2,q(Ω)

+ C‖a(u(tn))− a(û(tn))‖W 1,q(Ω)‖u(tn)‖W 1,∞(Ω)

≤ C‖u(tn)− û(tn)‖W 1,q(Ω);
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therefore, in view of (6.10), we have

(6.11) ‖
(
A(u(tn))−A(û(tn))

)
u(tn)‖Lq(Ω) ≤ Cτk.

Combining (6.11) and the bound for dn, we obtain the desired optimal order con-
sistency estimate (6.5) also for the scheme (2.3). �

7. Proof of Theorems 2.1 and 2.2

The cases (P1) and (P2) of Section 3.1 correspond to the situation in Theo-
rems 2.1 and 2.2, respectively. Lemma 3.1 ensures that problems (P1) and (P2) are
of the type considered in the abstract framework of Section 3.1, and Lemma 4.1
ensures the required uniform discrete maximal regularity of the BDF methods.
Lemma 6.1 yields that the situation of Section 4.2 holds with u�

n = u(tn) and
δ ≤ Cτk. The error bounds of Theorems 2.1 and 2.2 then follow from Proposi-
tion 4.1.

It remains to give the proofs of Lemmas 3.1 and 4.1. This is done in the final
two sections.

8. W -locally uniform maximal regularity

8.1. Proof of (i) in Lemma 3.1. Let Ω ⊂ R
d be a bounded Lipschitz domain

and consider the following initial and boundary value problem for a linear parabolic
equation, with a time-independent self-adjoint operator,

(8.1)

⎧⎪⎪⎨⎪⎪⎩
∂tu(x, t)−∇ ·

(
b(x)∇u(x, t)

)
= 0 for (x, t) ∈ Ω × R+,

u(x, t) = 0 for (t, x) ∈ ∂Ω × R+,

u(x, 0) = u0(x) for x ∈ Ω,

where the coefficient b(x) satisfies

(8.2) K−1
0 ≤ b(x) ≤ K0.

We consider W = Cα(Ω) and W = C1,α(Ω) in the settings (P1) and (P2), respec-
tively. In this section, we combine results from the literature and prove W -locally
uniform maximal parabolic regularity of (8.1), where the constant depends only on
K0 and ‖b‖W .

Let {E2(t)}t>0 denote the semigroup of operators on L2(Ω), which maps u0 to
u(·, t), given by (8.1) and let A2 denote the generator of this semigroup. Then
{E2(t)}t>0 extends to a bounded analytic semigroup on L2(Ω), in the sector Σθ =
{z ∈ C : z �= 0, | arg z| < θ}, where θ can be arbitrarily close to π/2 (see [10, 20]),
and the kernel G(t, x, y) of the semigroup {E2(t)}t>0 has an analytic extension to
the right half-plane, satisfying (see [10, p. 103])

(8.3) |G(z, x, y)| ≤ Cθ|z|−
d
2 e

− |x−y|2
Cθ|z| , ∀ z ∈ Σθ, ∀x, y ∈ Ω, ∀ θ ∈ (0, π/2),

where the constant Cθ depends only on K0 and θ. In other words, the rotated
operator A = −eiθA2 satisfies the condition of [15, Theorem 8.6], with m = 2 and

g(s) = Cθe
−s2/Cθ (see also [15, Remark 8.23]). As a consequence of [15, Theorem

8.6], E2(t) extends to an analytic semigroup Eq(t) on Lq(Ω), 1 < q < ∞, which is
R-bounded in the sector Σθ for all θ ∈ (0, π/2) and the R-bound depends only on
Cθ and q. (We refer to [15] for a discussion of the notion of R-boundedness.) To
summarize, we have the following lemma.
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Lemma 8.1 (Angle ofR-boundedness of the semigroup). For any given 1 < q < ∞,
the semigroup {Eq(t) : L

q(Ω) → Lq(Ω)}t>0 defined by the parabolic problem (8.1)
is R-bounded in the sector Σθ = {z ∈ C : |arg(z)| < θ} for all θ ∈ (0, π/2), and the
R-bound depends only on K0, θ and q.

According to Weis’ characterization of maximal Lp-regularity [24, Theorem 4.2],
Lemma 8.1 implies the following two results.

Lemma 8.2 (Angle of R-boundedness of the resolvent). Let Aq be the generator of
the semigroup {Eq(t)}t>0 defined by the parabolic problem (8.1), where 1 < q < ∞.
Then the set {λ(λ − Aq)

−1 : λ ∈ Σθ} is R-bounded in the sector Σθ = {z ∈ C :
|arg(z)| < θ} for all θ ∈ (0, π), and the R-bound depends only on K0, θ and q.

Lemma 8.3 (Maximal Lp-regularity). Let Aq be the generator of the semigroup
{Eq(t)}t>0 defined by the parabolic problem (8.1). Then the solution u(t) of the
parabolic initial value problem

(8.4)

{
u′(t) = Aqu(t) + f(t), t > 0,

u(0) = 0,

belongs to D(Aq) for almost all t ∈ R+, and

(8.5) ‖u′‖Lp(R+;Lq(Ω)) + ‖Aqu‖Lp(R+;Lq(Ω)) ≤ Cp,q‖f‖Lp(R+;Lq(Ω)),

for all f ∈ Lp(R+;L
q(Ω)) and 1 < p, q < ∞, where Cp,q depends only on p, q

and K0.

If the domain Ω is smooth and b ∈ C1,α(Ω̄), then (see [8, Chapter 3, Theorems
6.3–6.4]) by elliptic regularity

‖u‖W 2,q(Ω) ≤ Cq‖Aqu‖Lq(Ω),

where the constant Cq depends only on K0, q, α and ‖b‖C1,α(Ω). Hence, Lemma 8.3

implies (i) for the case (P2).
In the case (P1), we need to use the following elliptic regularity result.

Lemma 8.4. For any given bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, the solu-
tion of the elliptic boundary value problem

(8.6)

{
∇ · (b(x)∇u) = f in Ω,

u = 0 on ∂Ω,

satisfies

(8.7) ‖u‖W 1,q(Ω) ≤ Cq‖f‖W−1,q(Ω), ∀ q′d < q < qd,

where qd > 2 is some constant which depends on the domain and 1/qd + 1/q′d = 1,
and the constant Cq depends on q, K0, Ω, α and ‖b‖Cα(Ω). In particular, q2 > 4

and q3 > 3 for any given bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3.

Lemma 8.4 was proved in [13, Theorem 0.5] for constant coefficient b(x), and
this proof can be extended to variable coefficient b(x) by a standard perturbation
argument. By using Lemmas 8.3 and 8.4, we can also prove the following maximal
Lp-regularity onW−1,q(Ω), which implies (i) for the case (P1) (withX = W−1,q(Ω)
and d < q < qd).
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Lemma 8.5. If the domain Ω is Lipschitz continuous and b ∈ Cα(Ω) for some
α ∈ (0, 1), then the solution of (8.4) satisfies

(8.8) ‖∂tu‖Lp(R+;W−1,q(Ω)) + ‖u‖Lp(R+;W 1,q(Ω)) ≤ Cp,q‖f‖Lp(R+;W−1,q(Ω)),

for all f ∈ Lp(R+;W
−1,q(Ω)), 1 < p < ∞ and q′d < q < qd; the constant Cp,q

depends only on p, q, K0, Ω, α and ‖b‖Cα(Ω).

Proof. Since the solution of (8.4) is given by

u(t) =

∫ t

0

Eq(t− s)f(s)ds,

Lemma 8.3 implies that the map from f to Aqu given by the formula

Aqu(t) =

∫ t

0

AqEq(t− s)f(s)ds

is bounded in Lp(0, T ;Lq(Ω)). In other words, if we define

w(t) := −
∫ t

0

AqEq(t− s)(−Aq)
−1/2f(s)ds,

then we have

(8.9) ‖w‖Lp(0,T ;Lq(Ω)) ≤ Cp,q‖(−Aq)
−1/2f‖Lp(0,T ;Lq(Ω)),

where the fractional power operator (−Aq)
−1/2 is well defined (due to the self-

adjointness and positivity of −Aq) and commutes with Aq. It is straightforward to
check that

∇u = ∇(−Aq)
−1/2w.

Since the Riesz transform ∇(−Aq)
−1/2 is bounded on Lq(Ω) for q′d < q < qd (see

Appendix), it follows that ‖∇u‖Lp(0,T ;Lq(Ω)) ≤ Cp,q‖w‖Lp(0,T ;Lq(Ω)); therefore, in
view of (8.9), we have

(8.10) ‖∇u‖Lp(0,T ;Lq(Ω)) ≤ Cp,q‖(−Aq)
−1/2f‖Lp(0,T ;Lq(Ω)).

Moreover, since (−Aq)
−1/2∇· is the dual of the Riesz transform ∇(−Aq)

−1/2, it is
also bounded on Lq(Ω) for any q′d < q < qd, and so we have

‖(−Aq)
−1/2f‖Lp(0,T ;Lq(Ω)) = ‖(−Aq)

−1/2∇ · ∇Δ−1f‖Lp(0,T ;Lq(Ω))

≤ Cq‖∇Δ−1f‖Lp(0,T ;Lq(Ω)),

whence

(8.11) ‖(−Aq)
−1/2f‖Lp(0,T ;Lq(Ω)) ≤ Cp,q‖f‖Lp(0,T ;W−1,q(Ω)).

Estimates (8.10) and (8.11) yield (8.8). �

8.2. Proof of Lemma 4.1. In this section, we consider the BDF time discretiza-
tion of (8.4):

1

τ

k∑
j=0

δjun−j = Aqun + fn, n ≥ k,(8.12)

u0 = 0 and u1, . . . , uk−1 given (possibly nonzero).(8.13)

In view of Lemma 8.2, we have the following result, which implies Lemma 4.1
for the case (P2).
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Proposition 8.1 ([14, Theorems 4.1–4.2 and Remark 4.3]). For 1 ≤ k ≤ 6, the
solution of (8.12)–(8.13) satisfies

(8.14)

∥∥(u̇n)
N
n=k

∥∥
Lp(Lq(Ω))

+
∥∥(Aqun)

N
n=k

∥∥
Lp(Lq(Ω))

≤ Cp,q

(
τ

k−1∑
n=1

∥∥∥un − un−1

τ

∥∥∥p
Lq(Ω)

) 1
p

+ Cp,q

(
τ

k−1∑
n=1

‖Aqun‖pLq(Ω)

) 1
p

+ Cp,q

∥∥(fn)Nn=k

∥∥
Lp(Lq(Ω))

,

for 1 < p, q < ∞, where the constant Cp,q depends only on K0 and q, i.e., it is
independent of τ,N and b.

By applying Proposition 8.1, we prove the following result, which implies Lemma
4.1 for the case (P1) (with X = W−1,q(Ω) and d < q < qd).

Proposition 8.2. Let 1 ≤ k ≤ 6. If the domain Ω is Lipschitz continuous and
the coefficient satisfies b ∈ Cα(Ω) for some α ∈ (0, 1), then the solution of (8.12)–
(8.13) satisfies

(8.15)

∥∥(u̇n)
N
n=k

∥∥
Lp(W−1,q(Ω))

+
∥∥(un)

N
n=k

∥∥
Lp(W 1,q(Ω))

≤ Cp,q

(
τ

k−1∑
n=1

∥∥∥un − un−1

τ

∥∥∥p
W−1,q(Ω)

) 1
p

+ Cp,q

(
τ

k−1∑
n=1

‖un‖pW 1,q(Ω)

) 1
p

+ Cp,q

∥∥(fn)Nn=k

∥∥
Lp(W−1,q(Ω))

,

for all 1 < p < ∞ and q′d < q < qd, and the constant Cp,q depends only on K0, q,
Ω, α and ‖b‖Cα(Ω) (independent of τ and N).

Proof. In view of [14, Remark 4.3], we only need to consider the case u0 = · · · =
uk−1 = 0. The proof is a time-discrete analogue of the proof of Lemma 8.5.

We consider the expansion(δ(ζ)
τ

−Aq

)−1

= τ
∞∑

n=0

Enζ
n, |ζ| < 1,

which yields (see, e.g., [14, Section 7])

un =

n∑
j=k

τEn−jfj .

Proposition 8.1 implies that the map from (fn)
N
n=k to (Aqun)

N
n=k given by the

formula

Aqun =

n∑
j=k

τAqEn−jfj

is bounded in Lp(Lq(Ω)). In other words, if we define wn := (−Aq)
1/2un, then

wn = −
n∑

j=k

τAqEn−j(−Aq)
−1/2fj ,

and we have

(8.16) ‖(wn)
N
n=1‖Lp(Lq(Ω)) ≤ Cp,q‖((−Aq)

−1/2fn)
N
n=1‖Lp(Lq(Ω)),
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where the fractional power operator (−Aq)
−1/2 commutes with Aq. Obviously,

∇un = ∇(−Aq)
−1/2wn.

Since the Riesz transform ∇(−Aq)
−1/2 is bounded on Lq(Ω) for q′d < q < qd

(see Appendix), it follows that ‖(∇un)
N
n=1‖Lp(Lq(Ω)) ≤ Cp,q‖(wn)

N
n=1‖Lp(Lq(Ω));

therefore, in view of (8.16), we have

(8.17) ‖(∇un)
N
n=1‖Lp(Lq(Ω)) ≤ Cp,q‖((−Aq)

−1/2fn)
N
n=1‖Lp(Lq(Ω)).

Moreover, since (−Aq)
−1/2∇· is the dual of the Riesz transform ∇(−Aq)

−1/2, it is
also bounded on Lq(Ω) for any q′d < q < qd, and so we have

‖((−Aq)
−1/2fn)

N
n=1‖Lp(Lq(Ω)) = ‖((−Aq)

−1/2∇ · ∇Δ−1fn)
N
n=1‖Lp(Lq(Ω))

≤ Cq‖(∇Δ−1fn)
N
n=1‖Lp(Lq(Ω)),

whence

(8.18) ‖((−Aq)
−1/2fn)

N
n=1‖Lp(Lq(Ω)) ≤ Cp,q‖(fn)Nn=1‖Lp(W−1,q(Ω)).

Estimates (8.17) and (8.18) yield (8.15). �

9. Sobolev and related inequalities: Proof of Lemma 3.1

A Banach space X is said to be imbedded into another Banach space Y , denoted
by X ↪→ Y , if:

(a) u ∈ X =⇒ u ∈ Y ;
(b) ‖u‖Y ≤ C‖u‖X for all u ∈ X, where C is a constant independent of u.
The space X is said to be compactly imbedded into Y , denoted by X ↪→↪→ Y ,

if in addition to (a)–(b) the following condition is satisfied:
(c) bounded subsets of X are precompact subsets of Y .

Lemma 9.1. Let X, Y and Z be Banach spaces such that X is compactly imbedded
into Y , and Y is imbedded into Z, i.e.,

X ↪→↪→ Y ↪→ Z.

Then, for any ε > 0, there holds

‖u‖Y ≤ ε‖u‖X + Cε‖u‖Z ∀u ∈ X.

Proof. This lemma is probably well known, but since we did not find a reference,
we include the short proof.

Suppose, on the contrary, that there exists ε such that the inequality above does
not hold for all u ∈ X. Then, there exists a sequence un ∈ X, n = 1, 2, . . . , such
that

‖un‖Y ≥ ε‖un‖X + n‖un‖Z .
By a normalization (dividing un by a constant), we can assume that ‖un‖Y = 1 for
all n ≥ 1. Hence, we have

‖un‖X ≤ 1/ε and ‖un‖Z ≤ 1/n.

On one hand, since X is compactly embedded into Y , the boundedness of un in
X implies the existence of a subsequence unk

, k = 1, 2, . . . , which converges in Y
to some element u ∈ Y ↪→ Z. Hence,

‖u‖Y = lim
k→∞

‖unk
‖Y = 1.(9.1)
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On the other hand, ‖un‖Z ≤ 1/n implies that unk
converges to the zero element in

Z, which means that

u = 0.(9.2)

Clearly, (9.1) and (9.2) contradict each other. �

Lemma 9.2 (Sobolev imbedding). For s > 0, 1 < p, q < ∞ and d ≥ 1, we have:

(1) W s,q(Ω) ↪→↪→ Cα(Ω) ↪→ L∞(Ω) for α ∈ (0, s− d/q) if sq > d,
(2) W s,q(Ω) ↪→↪→ C1,α(Ω) for α ∈ (0, s− 1− d/q) if (s− 1)q > d,
(3) W s,p(R;X) ↪→ L∞(R;X) if sp > 1, where X = Lq(Ω) or X = W−1,q(Ω),
(4) H1(Ω) ↪→↪→ Lq0(Ω) for all 1 ≤ q0 < 2d/(d− 2) when d ≥ 2, and q0 = ∞ when

d = 1.

Remark 9.1. (1)–(2) of Lemma 9.2 are immediate consequences of [5, p. xviii,
Sobolev imbedding (18)]; (3) is a simple vector extension of (1); (4) can be found
in [11, p. 272, Theorem 1].

Proof of (ii) in Lemma 3.1. For any 1 < p, q < ∞ and r1, r2, r ≥ 0 such that
(1− θ)r1+ θr2 = r for θ ∈ (0, 1), we denote by Br,q

p (Ω) := (W r1,q(Ω),W r2,q(Ω))θ,p
the Besov space of order r (a real interpolation space between two Sobolev spaces,
see [23]). Then, via Sobolev embedding, we have

W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;W 2,q(Ω))

↪→ L∞(0, T ; (Lq(Ω),W 2,q(Ω))1−1/p,p) see [18, Proposition 1.2.10]

� L∞(0, T ;B2−2/p,q
p (Ω)) according to the definition

↪→ L∞(0, T ;C1,α(Ω)) when (1− 2/p)q > d ⇐⇒ 2/p+ d/q < 1. �

Proof of (iii)–(v) in Lemma 3.1. We first consider the setting (P2). Property (iii)
is standard textbook material. To prove (iv), we note

(A(v)−A(w))u = ∇ ·
(
(a(v)− a(w))∇u

)
= ∇(a(v)− a(w)) · ∇u+ (a(v)− a(w))Δu

and estimate as follows:

‖(A(v)−A(w))u‖Lq(Ω) ≤ CR‖v − w‖W 1,∞(Ω)‖u‖W 1,q(Ω)

+ CR‖v − w‖L∞(Ω)‖u‖W 2,q(Ω).

Since C1,α(Ω) is compactly imbedded into W 1,∞(Ω) and L∞(Ω), Lemma 9.1 gives
us the inequalities, for arbitrary ε > 0,

‖v − w‖W 1,∞(Ω) ≤ ε‖v − w‖C1,α(Ω) + Cε‖v − w‖L2(Ω),

‖v − w‖L∞(Ω) ≤ ε‖v − w‖C1,α(Ω) + Cε‖v − w‖L2(Ω).

The inequality of (v) follows by estimating

〈ϕ, (A(v)−A(w))u〉 ≤ CR‖ϕ‖H1(Ω) ‖v − w‖Lq̄(Ω)‖u‖W 1,q(Ω),

where 1/q̄+1/q = 1/2. Note that for the considered q > d we have q̄ = q/(q/2−1) <
d/(d/2 − 1), and so H1(Ω) is compactly imbedded into Lq̄(Ω) (see (4) of Lemma
9.2 or [1, Theorem 6.3]), so that by Lemma 9.1

‖v − w‖Lq̄(Ω) ≤ ε‖v − w‖H1(Ω) + Cε‖v − w‖L2(Ω).
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We now turn to the setting (P1). Property (iii) is the same as in (P2), and (v)
has actually been shown above. Property (iv) follows from estimating

〈ϕ, (A(v)−A(w))u〉 ≤ CR‖ϕ‖W 1,q′(Ω) ‖v − w‖L∞(Ω)‖u‖W 1,q(Ω),

where 1/q + 1/q′ = 1, and from the bound

‖v − w‖L∞(Ω) ≤ ε‖v − w‖Cα(Ω) + Cε‖v − w‖L2(Ω),

which follows from Lemma 9.1. �

Appendix A. Boundedness of the Riesz transform

Let Aq : D(Aq) → Lq(Ω) be defined by Aqu = ∇ · (b(x)∇u), where

D(Aq) = {u ∈ W 1,q(Ω) : ∇ · (b(x)∇u) ∈ Lq(Ω)} and b ∈ Cα(Ω) satisfies (8.2).

Lemma A.1. The Riesz transform ∇(−Aq)
−1/2 is bounded on Lq(Ω) for q′d < q <

qd, i.e.,

‖∇(−Aq)
−1/2u‖Lq(Ω) ≤ Cq‖u‖Lq(Ω), for q′d < q < qd,

where the constant Cq depends on q, Ω, α and ‖b‖Cα(Ω).

Proof. It has been proved in [22, Theorem B] that the Riesz transform ∇(−Aq)
−1/2

is bounded on Lq(Ω) if and only if every solution of the homogeneous equation

(A.1) ∇ · (b(x)∇u) = 0

in Ω ∩ B2r(x0) such that u = 0 on ∂Ω ∩ B2r(x0) (if it is not empty) satisfies the
following local estimate:

(A.2)

(
1

rd

∫
Ω∩Br(x0)

|∇u|qdx
) 1

q

≤ C

(
1

rd

∫
Ω∩B2r(x0)

|∇u|2dx
) 1

2

,

for all x0 ∈ Ω and 0 < r < r0, where r0 is any given small positive constant such
that Ω∩B2r0(x0) is the intersection of B2r0(x0) with a Lipschitz graph. It remains
to prove (A.2).

Let ω be a smooth cut-off function which equals zero outside B2r := B2r(x0)
and equals 1 on Br. Extend u to be zero on B2r\Ω and denote by u2r the average
of u over B2r. Then (A.1) implies

(A.3) ∇ · (b∇(ω(u− u2r))) = ∇ · (b(u− u2r)∇ω) + b∇ω · ∇(u− u2r) in Ω,

and the W 1,q estimate (Lemma 8.4) implies

‖ω(u− u2r)‖W 1,q(Ω) ≤ C‖(u− u2r)∇ω‖Lq(Ω) + C‖∇ω · ∇u‖W−1,q(Ω)

≤ C‖(u− u2r)∇ω‖Lq(Ω) + C‖∇ω · ∇u‖Ls(Ω)

= C‖(u− u2r)∇ω‖Lq(B2r) + C‖∇ω · ∇u‖Ls(B2r)

≤ Cr−1‖∇u‖Ls(B2r),

where s = qd/(q + d) < q satisfies Ls(Ω) ↪→ W−1,q(Ω) and W 1,s(Ω) ↪→ Lq(Ω).
The last inequality implies

(A.4) ‖∇u‖Lq(Ω∩Br) ≤ Cr−1‖∇u‖Ls(Ω∩B2r).

If s ≤ 2, then one can derive

‖∇u‖Lq(Ω∩Br) ≤ Crd/q−d/2‖∇u‖L2(Ω∩B2r)
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by once more using Hölder’s inequality on the right-hand side. Otherwise, one only
needs a finite number of iterations of (A.4) to reduce s to be less than 2. This
completes the proof of (A.2). �
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