Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations
HTML articles powered by AMS MathViewer
- by Georgios Akrivis, Buyang Li and Christian Lubich PDF
- Math. Comp. 86 (2017), 1527-1552 Request permission
Abstract:
We analyze fully implicit and linearly implicit backward difference formula (BDF) methods for quasilinear parabolic equations, without making any assumptions on the growth or decay of the coefficient functions. We combine maximal parabolic regularity and energy estimates to derive optimal-order error bounds for the time-discrete approximation to the solution and its gradient in the maximum norm and energy norm.References
- Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078
- Georgios Akrivis, Michel Crouzeix, and Charalambos Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999), no. 4, 521–541. MR 1701828, DOI 10.1007/s002110050429
- Georgios Akrivis and Emmanuil Katsoprinakis, Backward difference formulae: new multipliers and stability properties for parabolic equations, Math. Comp. 85 (2016), no. 301, 2195–2216. MR 3511279, DOI 10.1090/mcom3055
- Georgios Akrivis and Christian Lubich, Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math. 131 (2015), no. 4, 713–735. MR 3422451, DOI 10.1007/s00211-015-0702-0
- Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. MR 1345385, DOI 10.1007/978-3-0348-9221-6
- Claudio Baiocchi and Michel Crouzeix, On the equivalence of $A$-stability and $G$-stability, Appl. Numer. Math. 5 (1989), no. 1-2, 19–22. Recent theoretical results in numerical ordinary differential equations. MR 979543, DOI 10.1016/0168-9274(89)90020-2
- Sönke Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), no. 2, 157–176. MR 1853519, DOI 10.4064/sm146-2-3
- Ya-Zhe Chen and Lan-Cheng Wu, Second order elliptic equations and elliptic systems, Translations of Mathematical Monographs, vol. 174, American Mathematical Society, Providence, RI, 1998. Translated from the 1991 Chinese original by Bei Hu. MR 1616087, DOI 10.1090/mmono/174
- Germund Dahlquist, $G$-stability is equivalent to $A$-stability, BIT 18 (1978), no. 4, 384–401. MR 520750, DOI 10.1007/BF01932018
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- E. Hairer and G. Wanner, Solving ordinary differential equations. II, Springer Series in Computational Mathematics, vol. 14, Springer-Verlag, Berlin, 2010. Stiff and differential-algebraic problems; Second revised edition, paperback. MR 2657217, DOI 10.1007/978-3-642-05221-7
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- Balázs Kovács, Buyang Li, and Christian Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal. 54 (2016), no. 6, 3600–3624. MR 3582825, DOI 10.1137/15M1040918
- Peer C. Kunstmann and Lutz Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959, DOI 10.1007/978-3-540-44653-8_{2}
- Buyang Li, Maximum-norm stability and maximal $L^p$ regularity of FEMs for parabolic equations with Lipschitz continuous coefficients, Numer. Math. 131 (2015), no. 3, 489–516. MR 3395142, DOI 10.1007/s00211-015-0698-5
- Buyang Li and Weiwei Sun, Regularity of the diffusion-dispersion tensor and error analysis of Galerkin FEMs for a porous medium flow, SIAM J. Numer. Anal. 53 (2015), no. 3, 1418–1437. MR 3355773, DOI 10.1137/140958803
- Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. MR 1329547, DOI 10.1007/978-3-0348-9234-6
- Olavi Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim. 3 (1981), no. 4, 377–423. MR 636736, DOI 10.1080/01630568108816097
- El-Maati Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1465–1474. MR 1232142, DOI 10.1090/S0002-9939-1995-1232142-3
- A. H. Schatz, V. C. Thomée, and L. B. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), no. 3, 265–304. MR 562737, DOI 10.1002/cpa.3160330305
- Zhongwei Shen, Bounds of Riesz transforms on $L^p$ spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 173–197 (English, with English and French summaries). MR 2141694
- Luc Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR 2328004
- Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735–758. MR 1825406, DOI 10.1007/PL00004457
- Miloš Zlámal, Finite element methods for nonlinear parabolic equations, RAIRO Anal. Numér. 11 (1977), no. 1, 93–107, 113 (English, with French summary). MR 502073, DOI 10.1051/m2an/1977110100931
Additional Information
- Georgios Akrivis
- Affiliation: Department of Computer Science & Engineering, University of Ioannina, 451$\,$10 Ioannina, Greece
- MR Author ID: 24080
- Email: akrivis@cse.uoi.gr
- Buyang Li
- Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- MR Author ID: 910552
- Email: buyang.li@polyu.edu.hk
- Christian Lubich
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle, D-72076 Tübingen, Germany
- MR Author ID: 116445
- Email: lubich@na.uni-tuebingen.de
- Received by editor(s): January 26, 2016
- Published electronically: January 9, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 1527-1552
- MSC (2010): Primary 65M12, 65M15; Secondary 65L06
- DOI: https://doi.org/10.1090/mcom/3228
- MathSciNet review: 3626527