## On nonnegativity preservation in finite element methods for subdiffusion equations

HTML articles powered by AMS MathViewer

- by Bangti Jin, Raytcho Lazarov, Vidar Thomée and Zhi Zhou PDF
- Math. Comp.
**86**(2017), 2239-2260 Request permission

## Abstract:

We consider three types of subdiffusion models, namely single-term, multi-term and distributed order fractional diffusion equations, for which the maximum-principle holds and which, in particular, preserve nonnegativity. Hence the solution is nonnegative for nonnegative initial data. Following earlier work on the heat equation, our purpose is to study whether this property is inherited by certain spatially semidiscrete and fully discrete piecewise linear finite element methods, including the standard Galerkin method, the lumped mass method and the finite volume element method. It is shown that, as for the heat equation, when the mass matrix is nondiagonal, nonnegativity is not preserved for small time or time-step, but may reappear after a positivity threshold. For the lumped mass method nonnegativity is preserved if and only if the triangulation in the finite element space is of Delaunay type. Numerical experiments illustrate and complement the theoretical results.## References

- Panagiotis Chatzipantelidis, Zoltan Horváth, and Vidar Thomée,
*On preservation of positivity in some finite element methods for the heat equation*, Comput. Methods Appl. Math.**15**(2015), no. 4, 417–437. MR**3403443**, DOI 10.1515/cmam-2015-0018 - Panagiotis Chatzipantelidis, Raytcho Lazarov, and Vidar Thomée,
*Some error estimates for the finite volume element method for a parabolic problem*, Comput. Methods Appl. Math.**13**(2013), no. 3, 251–279. MR**3094617**, DOI 10.1515/cmam-2012-0006 - A. V. Chechkin, R. Gorenflo, and I. M. Sokolov,
*Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations*, Phys. Rev. E**66**(2002), 046129. - So-Hsiang Chou and Q. Li,
*Error estimates in $L^2,\ H^1$ and $L^\infty$ in covolume methods for elliptic and parabolic problems: a unified approach*, Math. Comp.**69**(2000), no. 229, 103–120. MR**1680859**, DOI 10.1090/S0025-5718-99-01192-8 - Andrei Drăgănescu, Todd F. Dupont, and L. Ridgway Scott,
*Failure of the discrete maximum principle for an elliptic finite element problem*, Math. Comp.**74**(2005), no. 249, 1–23. MR**2085400**, DOI 10.1090/S0025-5718-04-01651-5 - William Feller,
*An introduction to probability theory and its applications. Vol. II.*, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR**0270403** - H. Fujii,
*Some remarks on finite element analysis of time-dependent field problems*, In. Theory and Practice in Finite Element Structural Analysis (Y. Yamada, R. H. Gallagher & N. K. Kyokai eds). Tokyo, Japan: University of Tokyo Press, 1973, pp. 91–106. - Bangti Jin, Raytcho Lazarov, Yikan Liu, and Zhi Zhou,
*The Galerkin finite element method for a multi-term time-fractional diffusion equation*, J. Comput. Phys.**281**(2015), 825–843. MR**3281997**, DOI 10.1016/j.jcp.2014.10.051 - Bangti Jin, Raytcho Lazarov, Dongwoo Sheen, and Zhi Zhou,
*Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data*, Fract. Calc. Appl. Anal.**19**(2016), no. 1, 69–93. MR**3475410**, DOI 10.1515/fca-2016-0005 - Bangti Jin, Raytcho Lazarov, and Zhi Zhou,
*Error estimates for a semidiscrete finite element method for fractional order parabolic equations*, SIAM J. Numer. Anal.**51**(2013), no. 1, 445–466. MR**3033018**, DOI 10.1137/120873984 - Bangti Jin, Raytcho Lazarov, and Zhi Zhou,
*Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data*, SIAM J. Sci. Comput.**38**(2016), no. 1, A146–A170. MR**3449907**, DOI 10.1137/140979563 - Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo,
*Theory and applications of fractional differential equations*, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. MR**2218073** - Anatoly N. Kochubei,
*Distributed order calculus and equations of ultraslow diffusion*, J. Math. Anal. Appl.**340**(2008), no. 1, 252–281. MR**2376152**, DOI 10.1016/j.jmaa.2007.08.024 - Zhiyuan Li, Yikan Liu, and Masahiro Yamamoto,
*Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients*, Appl. Math. Comput.**257**(2015), 381–397. MR**3320678**, DOI 10.1016/j.amc.2014.11.073 - Zhiyuan Li, Yuri Luchko, and Masahiro Yamamoto,
*Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations*, Fract. Calc. Appl. Anal.**17**(2014), no. 4, 1114–1136. MR**3254683**, DOI 10.2478/s13540-014-0217-x - Yumin Lin and Chuanju Xu,
*Finite difference/spectral approximations for the time-fractional diffusion equation*, J. Comput. Phys.**225**(2007), no. 2, 1533–1552. MR**2349193**, DOI 10.1016/j.jcp.2007.02.001 - C. Lubich,
*Convolution quadrature and discretized operational calculus. I*, Numer. Math.**52**(1988), no. 2, 129–145. MR**923707**, DOI 10.1007/BF01398686 - Yury Luchko,
*Boundary value problems for the generalized time-fractional diffusion equation of distributed order*, Fract. Calc. Appl. Anal.**12**(2009), no. 4, 409–422. MR**2598188** - Yury Luchko,
*Maximum principle for the generalized time-fractional diffusion equation*, J. Math. Anal. Appl.**351**(2009), no. 1, 218–223. MR**2472935**, DOI 10.1016/j.jmaa.2008.10.018 - Yury Luchko,
*Initial-boundary problems for the generalized multi-term time-fractional diffusion equation*, J. Math. Anal. Appl.**374**(2011), no. 2, 538–548. MR**2729240**, DOI 10.1016/j.jmaa.2010.08.048 - K. Mustapha, B. Abdallah, and K. M. Furati,
*A discontinuous Petrov-Galerkin method for time-fractional diffusion equations*, SIAM J. Numer. Anal.**52**(2014), no. 5, 2512–2529. MR**3270028**, DOI 10.1137/140952107 - Per-Olof Persson and Gilbert Strang,
*A simple mesh generator in Matlab*, SIAM Rev.**46**(2004), no. 2, 329–345. MR**2114458**, DOI 10.1137/S0036144503429121 - Harry Pollard,
*The completely monotonic character of the Mittag-Leffler function $E_a(-x)$*, Bull. Amer. Math. Soc.**54**(1948), 1115–1116. MR**27375**, DOI 10.1090/S0002-9904-1948-09132-7 - Kenichi Sakamoto and Masahiro Yamamoto,
*Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems*, J. Math. Anal. Appl.**382**(2011), no. 1, 426–447. MR**2805524**, DOI 10.1016/j.jmaa.2011.04.058 - A. H. Schatz, V. Thomée, and L. B. Wahlbin,
*On positivity and maximum-norm contractivity in time stepping methods for parabolic equations*, Comput. Methods Appl. Math.**10**(2010), no. 4, 421–443. MR**2770304**, DOI 10.2478/cmam-2010-0025 - Ming C. Lin and Dinesh Manocha (eds.),
*Applied computational geometry*, Lecture Notes in Computer Science, vol. 1148, Springer-Verlag, Berlin, 1996. Towards geometric engineering; Papers from the 1st ACM Workshop (WACG) held as part of the 2nd Federated Computing Research Conference (FCRC ’96) in Philadelphia, PA, May 27–28, 1996. MR**1445297**, DOI 10.1007/BFb0014474 - V. Thomée,
*On positivity preservation in some finite element methods for the heat equation*, Numerical methods and applications, Lecture Notes in Comput. Sci., vol. 8962, Springer, Cham, 2015, pp. 13–24. MR**3334845**, DOI 10.1007/978-3-319-15585-2_{2} - Vidar Thomée and Lars B. Wahlbin,
*On the existence of maximum principles in parabolic finite element equations*, Math. Comp.**77**(2008), no. 261, 11–19. MR**2353941**, DOI 10.1090/S0025-5718-07-02021-2 - J. A. C. Weideman and L. N. Trefethen,
*Parabolic and hyperbolic contours for computing the Bromwich integral*, Math. Comp.**76**(2007), no. 259, 1341–1356. MR**2299777**, DOI 10.1090/S0025-5718-07-01945-X

## Additional Information

**Bangti Jin**- Affiliation: Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom
- MR Author ID: 741824
- Email: bangti.jin@gmail.com;b.jin@ucl.ac.uk
**Raytcho Lazarov**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 111240
- Email: lazarov@math.tamu.edu
**Vidar Thomée**- Affiliation: Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96 Göteborg, Sweden
- MR Author ID: 172250
- Email: thomee@chalmers.se
**Zhi Zhou**- Affiliation: Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, New York 10027
- MR Author ID: 1011798
- Email: zhizhou0125@gmail.com
- Received by editor(s): October 10, 2015
- Received by editor(s) in revised form: March 19, 2016
- Published electronically: December 21, 2016
- Additional Notes: The work of the first author was partially supported by UK Engineering and Physical Sciences Research Council grant EP/M025160/1.
- © Copyright 2016 American Mathematical Society
- Journal: Math. Comp.
**86**(2017), 2239-2260 - MSC (2010): Primary 65M12, 65M60
- DOI: https://doi.org/10.1090/mcom/3167
- MathSciNet review: 3647957