## Isolating some non-trivial zeros of zeta

HTML articles powered by AMS MathViewer

- by David J. Platt PDF
- Math. Comp.
**86**(2017), 2449-2467 Request permission

## Abstract:

We describe a rigorous algorithm to compute Riemann’s zeta function on the half line and its use to isolate the non-trivial zeros of zeta with imaginary part $\leq 30,610,046,000$ to an absolute precision of $\pm 2^{-102}$. In the process, we provide an independent verification of the Riemann Hypothesis to this height.## References

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604** - ACRC,
*BlueCrystal Phase 2 User Guide*, 2009. - Tom M. Apostol,
*An elementary view of Euler’s summation formula*, Amer. Math. Monthly**106**(1999), no. 5, 409–418. MR**1699259**, DOI 10.2307/2589145 - M. V. Berry and J. P. Keating,
*A new asymptotic representation for $\zeta (\frac 12+it)$ and quantum spectral determinants*, Proc. Roy. Soc. London Ser. A**437**(1992), no. 1899, 151–173. MR**1177749**, DOI 10.1098/rspa.1992.0053 - Jonathan Bober,
*Zeros of $\zeta (s)$*, 2014, http://www.lmfdb.org/zeros/zeta/. - Andrew R. Booker,
*Artin’s conjecture, Turing’s method, and the Riemann hypothesis*, Experiment. Math.**15**(2006), no. 4, 385–407. MR**2293591** - J. L. Brown Jr.,
*On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem*, J. Math. Anal. Appl.**18**(1967), 75–84. MR**204952**, DOI 10.1016/0022-247X(67)90183-7 - J. Arias de Reyna,
*High precision computation of Riemann’s zeta function by the Riemann-Siegel formula, I*, Math. Comp.**80**(2011), no. 274, 995–1009. MR**2772105**, DOI 10.1090/S0025-5718-2010-02426-3 - H.M. Edwards,
*Riemann’s Zeta Function*, Pure and Applied Mathematics, Academic Press Inc., 1974. - X. Gourdon,
*The $10^{13}$ First Zeros of the Riemann Zeta Function, and Zeros Computation at Very Large Height*, http://numbers.computation.free.fr/Constants/Miscellaneous/ zetazeros1e13-1e24.pdf, 2010. - D. E. G. Hare,
*Computing the principal branch of log-Gamma*, J. Algorithms**25**(1997), no. 2, 221–236. MR**1478568**, DOI 10.1006/jagm.1997.0881 - Ghaith Ayesh Hiary,
*Fast methods to compute the Riemann zeta function*, Ann. of Math. (2)**174**(2011), no. 2, 891–946. MR**2831110**, DOI 10.4007/annals.2011.174.2.4 - Fredrik Johansson et al.,
*mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.19)*, 2014, http://www.mpmath.org/doc/0.19/index.html. - J. C. Lagarias and A. M. Odlyzko,
*Computing $\pi (x)$: an analytic method*, J. Algorithms**8**(1987), no. 2, 173–191. MR**890871**, DOI 10.1016/0196-6774(87)90037-X - R. Sherman Lehman,
*On the distribution of zeros of the Riemann zeta-function*, Proc. London Math. Soc. (3)**20**(1970), 303–320. MR**258768**, DOI 10.1112/plms/s3-20.2.303 - Ramon E. Moore,
*Interval analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0231516** - A.M. Odlyzko,
*Tables of zeros of the Riemann zeta function*, http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html. - —,
*The $10^{20}$-th zero of the Riemann zeta function and 175 million of its neighbors*, http://www.dtc.umn.edu/~odlyzko/unpublished/index.html, 1992. - A. M. Odlyzko and A. Schönhage,
*Fast algorithms for multiple evaluations of the Riemann zeta function*, Trans. Amer. Math. Soc.**309**(1988), no. 2, 797–809. MR**961614**, DOI 10.1090/S0002-9947-1988-0961614-2 - David J. Platt,
*Computing $\pi (x)$ Analytically*, Math. Comp.**84**(2015), 1521–1535. - David J. Platt,
*Numerical computations concerning the GRH*, Math. Comp.**85**(2016), no. 302, 3009–3027. MR**3522979**, DOI 10.1090/mcom/3077 - D. J. Platt and T. S. Trudgian,
*An improved explicit bound on $|\zeta (\frac 12+it)|$*, J. Number Theory**147**(2015), 842–851. MR**3276357**, DOI 10.1016/j.jnt.2014.08.019 - D. J. Platt and T. S. Trudgian,
*On the first sign change of $\theta (x)-x$*, Math. Comp.**85**(2016), no. 299, 1539–1547. MR**3454375**, DOI 10.1090/mcom/3021 - N. Revol and F. Rouillier,
*A library for arbitrary precision interval arithmetic*, 10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, 2002. - Michael Rubinstein,
*lcalc – The L-function calculator*, http://code.google.com/p/l-calc/. - Yannick Saouter, Timothy Trudgian, and Patrick Demichel,
*A still sharper region where $\pi (x)-\textrm {li}(x)$ is positive*, Math. Comp.**84**(2015), no. 295, 2433–2446. MR**3356033**, DOI 10.1090/S0025-5718-2015-02930-5 - Timothy Trudgian,
*Improvements to Turing’s method*, Math. Comp.**80**(2011), no. 276, 2259–2279. MR**2813359**, DOI 10.1090/S0025-5718-2011-02470-1 - A. M. Turing,
*Some calculations of the Riemann zeta-function*, Proc. London Math. Soc. (3)**3**(1953), 99–117. MR**55785**, DOI 10.1112/plms/s3-3.1.99 - James S. Walker,
*Fast Fourier transforms*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. With 1 IBM-PC floppy disk (5.25 inch; DD). MR**1169681** - S. Wedeniwski,
*ZetaGrid–Computations connected with the Verification of the Riemann Hypothesis*, Foundations of Computational Mathematics Conference, Minnesota, USA, 2002.

## Additional Information

**David J. Platt**- Affiliation: Heilbronn Institute for Mathematical Research, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
- MR Author ID: 1045993
- Email: dave.platt@bris.ac.uk
- Received by editor(s): March 17, 2015
- Received by editor(s) in revised form: March 29, 2016
- Published electronically: February 13, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp.
**86**(2017), 2449-2467 - MSC (2010): Primary 11Y35, 11M26
- DOI: https://doi.org/10.1090/mcom/3198
- MathSciNet review: 3647966