A practical analytic method for calculating $\pi (x)$
HTML articles powered by AMS MathViewer
- by Jens Franke, Thorsten Kleinjung, Jan Büthe and Alexander Jost;
- Math. Comp. 86 (2017), 2889-2909
- DOI: https://doi.org/10.1090/mcom/3038
- Published electronically: March 30, 2017
- PDF | Request permission
Abstract:
In this paper we give a description of a practical analytic method for the computation of $\pi (x)$, the number of prime numbers $\leq x$. The method is similar to the one proposed by Lagarias and Odlyzko but uses the Weil-Barner explicit formula instead of curve integrals.References
- Klaus Barner, On A. Weil’s explicit formula, J. Reine Angew. Math. 323 (1981), 139–152. MR 611448, DOI 10.1515/crll.1981.323.139
- J. Büthe, Jens Franke, Alexander Jost, and Thorsten Kleinjung, Some applications of the Weil-Barner explicit formula, Math. Nachr. 286 (2013), no. 5-6, 536–549. MR 3048130, DOI 10.1002/mana.201100218
- Jan Büthe, An improved analytic method for calculating $\pi (x)$, Manuscripta Math. 151 (2016), no. 3-4, 329–352. MR 3556823, DOI 10.1007/s00229-016-0840-4
- William Floyd Galway, Analytic computation of the prime-counting function, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR 2706687
- D. H. Lehmer, On the exact number of primes less than a given limit, Illinois J. Math. 3 (1959), 381–388. MR 106883
- J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing $\pi (x)$: the Meissel-Lehmer method, Math. Comp. 44 (1985), no. 170, 537–560. MR 777285, DOI 10.1090/S0025-5718-1985-0777285-5
- J. C. Lagarias and A. M. Odlyzko, Computing $\pi (x)$: an analytic method, J. Algorithms 8 (1987), no. 2, 173–191. MR 890871, DOI 10.1016/0196-6774(87)90037-X
- B. F. Logan, Bounds for the tails of sharp-cutoff filter kernels, SIAM J. Math. Anal. 19 (1988), no. 2, 372–376. MR 930033, DOI 10.1137/0519027
- Yudell L. Luke, Inequalities for generalized hypergeometric functions, J. Approximation Theory 5 (1972), 41–65. MR 350082, DOI 10.1016/0021-9045(72)90028-7
- Meissel, Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen, Math. Ann. 2 (1870), no. 4, 636–642 (German). MR 1509683, DOI 10.1007/BF01444045
- A. M. Odlyzko, The $10^{20}$-th Zero of the Riemann Zeta Function and 175 Million of Its Neighbors, http://www.dtc.umn.edu/$\sim$odlyzko/unpublished/zeta.10to20.1992.pdf, 1992.
- A. M. Odlyzko and A. Schönhage, Fast algorithms for multiple evaluations of the Riemann zeta function, Trans. Amer. Math. Soc. 309 (1988), no. 2, 797–809. MR 961614, DOI 10.1090/S0002-9947-1988-0961614-2
- David J. Platt, Computing $\pi (x)$ analytically, Math. Comp. 84 (2015), no. 293, 1521–1535. MR 3315519, DOI 10.1090/S0025-5718-2014-02884-6
- Hans Riesel and Gunnar Göhl, Some calculations related to Riemann’s prime number formula, Math. Comp. 24 (1970), 969–983. MR 277489, DOI 10.1090/S0025-5718-1970-0277489-3
- B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie 11 (1859), pp. 177–187.
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- H. von Mangoldt, Zu Riemanns Abhandlungen “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, J. Reine Angew. Math. 114 (1895), pp. 255–305.
- André Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplémentaire, 252–265 (French). MR 53152
Bibliographic Information
- Jens Franke
- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 237434
- Thorsten Kleinjung
- Affiliation: Laboratory for Cryptologic Algorithms, EPFL, Station 14, CH-1015 Lausanne, Switzerland
- MR Author ID: 704259
- Jan Büthe
- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 1017601
- Alexander Jost
- Affiliation: Graurheindorfer Strasse 64, 53111 Bonn, Germany
- Received by editor(s): October 7, 2013
- Received by editor(s) in revised form: November 11, 2014
- Published electronically: March 30, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 2889-2909
- MSC (2010): Primary 11Y35; Secondary 11Y70
- DOI: https://doi.org/10.1090/mcom/3038
- MathSciNet review: 3667029