A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces
HTML articles powered by AMS MathViewer
- by Karl Larsson and Mats G. Larson;
- Math. Comp. 86 (2017), 2613-2649
- DOI: https://doi.org/10.1090/mcom/3179
- Published electronically: March 30, 2017
- PDF | Request permission
Abstract:
We present a continuous/discontinuous Galerkin method for approximating solutions to a fourth order elliptic PDE on a surface embedded in $\mathbb {R}^3$. A priori error estimates, taking both the approximation of the surface and the approximation of surface differential operators into account, are proven in a discrete energy norm and in $L^2$ norm. This can be seen as an extension of the formalism and method originally used by Dziuk (1988) for approximating solutions to the Laplace–Beltrami problem, and within this setting this is the first analysis of a surface finite element method formulated using higher order surface differential operators. Using a polygonal approximation $\Gamma _h$ of an implicitly defined surface $\Gamma$ we employ continuous piecewise quadratic finite elements to approximate solutions to the biharmonic equation on $\Gamma$. Numerical examples on the sphere and on the torus confirm the convergence rate implied by our estimates.References
- Paola F. Antonietti, Andreas Dedner, Pravin Madhavan, Simone Stangalino, Björn Stinner, and Marco Verani, High order discontinuous Galerkin methods for elliptic problems on surfaces, SIAM J. Numer. Anal. 53 (2015), no. 2, 1145–1171. MR 3338674, DOI 10.1137/140957172
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Susanne C. Brenner and Li-Yeng Sung, $C^0$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput. 22/23 (2005), 83–118. MR 2142191, DOI 10.1007/s10915-004-4135-7
- E. Burman, P. Hansbo, M. G. Larson, K. Larsson, and A. Massing, Finite element approximation of the Laplace–Beltrami operator on a surface with boundary, preprint, arXiv:1509.08597, 2015.
- J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), no. 2, 258–267.
- D. Chapelle and K. J. Bathe, The finite element analysis of shells—fundamentals, Computational Fluid and Solid Mechanics, Springer-Verlag, Berlin, 2003. MR 2143259, DOI 10.1007/978-3-662-05229-7
- Philippe G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. MR 1930132, DOI 10.1137/1.9780898719208
- Andreas Dedner, Pravin Madhavan, and Björn Stinner, Analysis of the discontinuous Galerkin method for elliptic problems on surfaces, IMA J. Numer. Anal. 33 (2013), no. 3, 952–973. MR 3081490, DOI 10.1093/imanum/drs033
- Michel C. Delfour, Tangential differential calculus and functional analysis on a $C^{1,1}$ submanifold, Differential geometric methods in the control of partial differential equations (Boulder, CO, 1999) Contemp. Math., vol. 268, Amer. Math. Soc., Providence, RI, 2000, pp. 83–115. MR 1804791, DOI 10.1090/conm/268/04309
- Alan Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 2, 805–827. MR 2485433, DOI 10.1137/070708135
- Alan Demlow and Gerhard Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), no. 1, 421–442. MR 2285862, DOI 10.1137/050642873
- Alan Demlow and Maxim A. Olshanskii, An adaptive surface finite element method based on volume meshes, SIAM J. Numer. Anal. 50 (2012), no. 3, 1624–1647. MR 2970758, DOI 10.1137/110842235
- Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988, pp. 142–155. MR 976234, DOI 10.1007/BFb0082865
- G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal. 27 (2007), no. 2, 262–292. MR 2317005, DOI 10.1093/imanum/drl023
- G. Dziuk and C. M. Elliott, Surface finite elements for parabolic equations, J. Comput. Math. 25 (2007), no. 4, 385–407. MR 2337402
- Gerhard Dziuk and Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (2013), 289–396. MR 3038698, DOI 10.1017/S0962492913000056
- G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 34, 3669–3750. MR 1915664, DOI 10.1016/S0045-7825(02)00286-4
- P. Hansbo and M. G. Larson, A stabilized finite element method for the Darcy problem on surfaces, IMA J. Numer. Anal. (2016), Advance online publication, DOI 10.1093/imanum/drw041.
- Claes Johnson, Numerical solution of partial differential equations by the finite element method, Cambridge University Press, Cambridge, 1987. MR 925005
- Tamara G. Kolda and Brett W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009), no. 3, 455–500. MR 2535056, DOI 10.1137/07070111X
- Mats G. Larson and Fredrik Bengzon, The finite element method: theory, implementation, and applications, Texts in Computational Science and Engineering, vol. 10, Springer, Heidelberg, 2013. MR 3015004, DOI 10.1007/978-3-642-33287-6
- Maxim A. Olshanskii, Arnold Reusken, and Jörg Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3339–3358. MR 2551197, DOI 10.1137/080717602
- L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal. 37 (2000), no. 2, 523–555. MR 1740768, DOI 10.1137/S0036142998335698
Bibliographic Information
- Karl Larsson
- Affiliation: Department of Mathematics and Mathematical Statistics, Umeå University, SE-901 87 Umeå, Sweden
- Email: karl.larsson@umu.se
- Mats G. Larson
- Affiliation: Department of Mathematics and Mathematical Statistics, Umeå University, SE-901 87 Umeå, Sweden
- MR Author ID: 648688
- Email: mats.larson@umu.se
- Received by editor(s): January 19, 2015
- Received by editor(s) in revised form: February 5, 2016, and April 26, 2016
- Published electronically: March 30, 2017
- Additional Notes: This research was supported in part by the Swedish Foundation for Strategic Research Grant No. AM13-0029, the Swedish Research Council Grant No. 2013-4708, and the Swedish strategic research programme eSSENCE
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 86 (2017), 2613-2649
- MSC (2010): Primary 65N15, 65N30, 58J99
- DOI: https://doi.org/10.1090/mcom/3179
- MathSciNet review: 3667019