Extreme zeros in a sequence of para-orthogonal polynomials and bounds for the support of the measure
HTML articles powered by AMS MathViewer
- by A. Martínez-Finkelshtein, A. Sri Ranga and D. O. Veronese;
- Math. Comp. 87 (2018), 261-288
- DOI: https://doi.org/10.1090/mcom/3210
- Published electronically: April 28, 2017
- PDF | Request permission
Abstract:
Given a nontrivial Borel measure $\mu$ on the unit circle $\mathbb T$, the corresponding reproducing (or Christoffel-Darboux) kernels with one of the variables fixed at $z=1$ constitute a family of so-called para-orthogonal polynomials, whose zeros belong to $\mathbb T$. With a proper normalization they satisfy a three-term recurrence relation determined by two sequences of real coefficients, $\{c_n\}$ and $\{d_n\}$, where $\{d_n\}$ is additionally a positive chain sequence. Coefficients $(c_n,d_n)$ provide a parametrization of a family of measures related to $\mu$ by addition of a mass point at $z=1$.
In this paper we estimate the location of the extreme zeros (those closest to $z=1$) of the para-orthogonal polynomials from the $(c_n,d_n)$-parametrization of the measure, and use this information to establish sufficient conditions for the existence of a gap in the support of $\mu$ at $z=1$. These results are easily reformulated in order to find gaps in the support of $\mu$ at any other $z\in \mathbb T$.
We provide also some examples showing that the bounds are tight and illustrate their computational applications.
References
- C. F. Bracciali, J. H. McCabe, T. E. Pérez, and A. Sri Ranga, A class of orthogonal functions given by a three term recurrence formula, Math. Comp. 85 (2016), no. 300, 1837–1859. MR 3471110, DOI 10.1090/mcom3041
- C. F. Bracciali, A. Sri Ranga, and A. Swaminathan, Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas, Appl. Numer. Math. 109 (2016), 19–40. MR 3541940, DOI 10.1016/j.apnum.2016.05.008
- M. J. Cantero, L. Moral, and L. Velázquez, Measures and para-orthogonal polynomials on the unit circle, East J. Approx. 8 (2002), no. 4, 447–464. MR 1952510
- M. J. Cantero, L. Moral, and L. Velázquez, Measures on the unit circle and unitary truncations of unitary operators, J. Approx. Theory 139 (2006), no. 1-2, 430–468. MR 2220048, DOI 10.1016/j.jat.2005.11.001
- K. Castillo, M. S. Costa, A. Sri Ranga, and D. O. Veronese, A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula, J. Approx. Theory 184 (2014), 146–162. MR 3218796, DOI 10.1016/j.jat.2014.05.007
- T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR 481884
- M. S. Costa, H. M. Felix, and A. Sri Ranga, Orthogonal polynomials on the unit circle and chain sequences, J. Approx. Theory 173 (2013), 14–32. MR 3073604, DOI 10.1016/j.jat.2013.04.009
- Leyla Daruis, Olav Njåstad, and Walter Van Assche, Para-orthogonal polynomials in frequency analysis, Rocky Mountain J. Math. 33 (2003), no. 2, 629–645. 2001: a mathematics odyssey (Grand Junction, CO). MR 2021369, DOI 10.1216/rmjm/1181069970
- Philippe Delsarte and Yves V. Genin, The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process. 34 (1986), no. 3, 470–478. MR 844658, DOI 10.1109/TASSP.1986.1164830
- P. Delsarte and Y. Genin, The tridiagonal approach to Szegő’s orthogonal polynomials, Toeplitz linear systems, and related interpolation problems, SIAM J. Math. Anal. 19 (1988), no. 3, 718–735. MR 937480, DOI 10.1137/0519050
- Dimitar K. Dimitrov and A. Sri Ranga, Zeros of a family of hypergeometric para-orthogonal polynomials on the unit circle, Math. Nachr. 286 (2013), no. 17-18, 1778–1791. MR 3145170, DOI 10.1002/mana.201200181
- D. K. Dimitrov, M. E. H. Ismail, and A. Sri Ranga, A class of hypergeometric polynomials with zeros on the unit circle: extremal and orthogonal properties and quadrature formulas, Appl. Numer. Math. 65 (2013), 41–52. MR 3008187, DOI 10.1016/j.apnum.2012.11.002
- Tamás Erdélyi, Paul Nevai, John Zhang, and Jeffrey S. Geronimo, A simple proof of “Favard’s theorem” on the unit circle, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), no. 2, 551–556. MR 1150798
- J. Geronimus, On the trigonometric moment problem, Ann. of Math. (2) 47 (1946), 742–761. MR 18265, DOI 10.2307/1969232
- Ya. L. Geronimus, Orthogonal Polynomials, English translation of the appendix to the Russian translation of Szegő’s book \cite{Szego-Book}, in “Two Papers on Special Functions”, Amer. Math. Soc. Transl., Ser. 2, Vol. 108, pp. 37-130, American Mathematical Society, Providence, R.I., 1977.
- L. Golinskii, Quadrature formula and zeros of para-orthogonal polynomials on the unit circle, Acta Math. Hungar. 96 (2002), no. 3, 169–186. MR 1919160, DOI 10.1023/A:1019765002077
- Leonid Golinskii, Paul Nevai, and Walter Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle, J. Approx. Theory 83 (1995), no. 3, 392–422. MR 1361537, DOI 10.1006/jath.1995.1128
- Leonid Golinskii, Paul Nevai, Ferenc Pintér, and Walter Van Assche, Perturbation of orthogonal polynomials on an arc of the unit circle. II, J. Approx. Theory 96 (1999), no. 1, 1–32. MR 1659428, DOI 10.1006/jath.1998.3208
- William B. Jones, Olav Njåstad, and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), no. 2, 113–152. MR 976057, DOI 10.1112/blms/21.2.113
- Mourand E. H. Ismail and Xin Li, Bound on the extreme zeros of orthogonal polynomials, Proc. Amer. Math. Soc. 115 (1992), no. 1, 131–140. MR 1079891, DOI 10.1090/S0002-9939-1992-1079891-5
- William B. Jones, Olav Njåstad, and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), no. 2, 113–152. MR 976057, DOI 10.1112/blms/21.2.113
- A. Martínez-Finkelshtein, K. T.-R. McLaughlin, and E. B. Saff, Szegő orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics, Constr. Approx. 24 (2006), no. 3, 319–363. MR 2253965, DOI 10.1007/s00365-005-0617-6
- A. Martínez-Finkelshtein, K. T.-R. McLaughlin, and E. B. Saff, Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle, Int. Math. Res. Not. , posted on (2006), Art. ID 91426, 43. MR 2250012, DOI 10.1155/IMRN/2006/91426
- Barry Simon, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory. MR 2105088, DOI 10.1090/coll054.1
- Barry Simon, Orthogonal polynomials on the unit circle. Part 2, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. Spectral theory. MR 2105089, DOI 10.1090/coll/054.2/01
- Barry Simon, Szegő’s theorem and its descendants, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011. Spectral theory for $L^2$ perturbations of orthogonal polynomials. MR 2743058
- Christopher D. Sinclair and Jeffrey D. Vaaler, Self-inversive polynomials with all zeros on the unit circle, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 312–321. MR 2428529, DOI 10.1017/CBO9780511721274.020
- A. Sri Ranga, Szegő polynomials from hypergeometric functions, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4259–4270. MR 2680052, DOI 10.1090/S0002-9939-2010-10592-0
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, 1948. MR 25596
- Manwah Lilian Wong, First and second kind paraorthogonal polynomials and their zeros, J. Approx. Theory 146 (2007), no. 2, 282–293. MR 2328186, DOI 10.1016/j.jat.2006.12.007
- Alexei Zhedanov, On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval, J. Approx. Theory 94 (1998), no. 1, 73–106. MR 1637803, DOI 10.1006/jath.1998.3179
Bibliographic Information
- A. Martínez-Finkelshtein
- Affiliation: Departamento de Matemáticas, Universidad de Almería, 04120 Almería, and Instituto Carlos I de Física Teórica and Computacional, Granada University, Spain
- MR Author ID: 248069
- ORCID: 0000-0001-9421-5624
- Email: andrei@ual.es
- A. Sri Ranga
- Affiliation: Departamento de Matemática Aplicada, IBILCE, UNESP - Universidade Estadual Paulista, 15054-000, São José do Rio Preto, SP, Brazil
- MR Author ID: 238837
- Email: ranga@ibilce.unesp.br
- D. O. Veronese
- Affiliation: ICTE, UFTM - Universidade Federal do Triângulo Mineiro, 38064–200 Uberaba, MG, Brazil
- MR Author ID: 928590
- Email: daniel.veronese@uftm.edu.br
- Received by editor(s): October 27, 2015
- Received by editor(s) in revised form: September 2, 2016
- Published electronically: April 28, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 261-288
- MSC (2010): Primary 42C05, 33C47; Secondary 65D20, 33C45
- DOI: https://doi.org/10.1090/mcom/3210
- MathSciNet review: 3716196