## Certification of modular Galois representations

HTML articles powered by AMS MathViewer

- by Nicolas Mascot PDF
- Math. Comp.
**87**(2018), 381-423 Request permission

## Abstract:

We show how the output of the algorithm to compute modular Galois representations previously described by the author [Rend. Circ. Mat. Palermo (2) 62 (2013), no. 3, 451–476] can be certified. We have used this process to compute certified tables of such Galois representations obtained thanks to an improved version of this algorithm, including representations modulo primes up to $31$ and representations attached to a newform with nonrational (but of course algebraic) coefficients, which had never been done before. These computations take place in the Jacobian of modular curves of genus up to $26$.## References

- K. Belabas and D. Simon,
*Ideal power detection over number fields*, in preparation, personal communication. - J. Bosman,
*On the computation of Galois representations associated to level one modular forms*, Chapter 7 in [CE11]. - Henri Cohen,
*A course in computational algebraic number theory*, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR**1228206**, DOI 10.1007/978-3-662-02945-9 - Bas Edixhoven and Jean-Marc Couveignes (eds.),
*Computational aspects of modular forms and Galois representations*, Annals of Mathematics Studies, vol. 176, Princeton University Press, Princeton, NJ, 2011. How one can compute in polynomial time the value of Ramanujan’s tau at a prime. MR**2849700**, DOI 10.1515/9781400839001 - Pierre Deligne,
*Formes modulaires et représentations $l$-adiques*, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR**3077124** - M. Derickx, M. van Hoeij, and J. Zeng,
*Computing Galois representations and equations for modular curves*$X_H(\ell )$, arXiv:1312.6819. - John D. Dixon and Brian Mortimer,
*Permutation groups*, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. MR**1409812**, DOI 10.1007/978-1-4612-0731-3 - Tim Dokchitser and Vladimir Dokchitser,
*Identifying Frobenius elements in Galois groups*, Algebra Number Theory**7**(2013), no. 6, 1325–1352. MR**3107565**, DOI 10.2140/ant.2013.7.1325 - D. W. Farmer and K. James,
*The irreducibility of some level 1 Hecke polynomials*, Math. Comp.**71**(2002), no. 239, 1263–1270. MR**1898755**, DOI 10.1090/S0025-5718-01-01375-8 - Claus Fieker and Jürgen Klüners,
*Computation of Galois groups of rational polynomials*, LMS J. Comput. Math.**17**(2014), no. 1, 141–158. MR**3230862**, DOI 10.1112/S1461157013000302 - Benedict H. Gross,
*A tameness criterion for Galois representations associated to modular forms (mod $p$)*, Duke Math. J.**61**(1990), no. 2, 445–517. MR**1074305**, DOI 10.1215/S0012-7094-90-06119-8 - Gregory Karpilovsky,
*The Schur multiplier*, London Mathematical Society Monographs. New Series, vol. 2, The Clarendon Press, Oxford University Press, New York, 1987. MR**1200015** - Chandrashekhar Khare and Jean-Pierre Wintenberger,
*Serre’s modularity conjecture. I*, Invent. Math.**178**(2009), no. 3, 485–504. MR**2551763**, DOI 10.1007/s00222-009-0205-7 - Serge Lang,
*Algebra*, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR**1878556**, DOI 10.1007/978-1-4613-0041-0 - Wieb Bosma, John Cannon, and Catherine Playoust,
*The Magma algebra system. I. The user language*, J. Symbolic Comput.**24**(1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR**1484478**, DOI 10.1006/jsco.1996.0125 - Nicolas Mascot,
*Computing modular Galois representations*, Rend. Circ. Mat. Palermo (2)**62**(2013), no. 3, 451–476. MR**3118315**, DOI 10.1007/s12215-013-0136-4 - Hyunsuk Moon and Yuichiro Taguchi,
*Refinement of Tate’s discriminant bound and non-existence theorems for mod $p$ Galois representations*, Doc. Math.**Extra Vol.**(2003), 641–654. Kazuya Kato’s fiftieth birthday. MR**2046611** - Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg,
*Cohomology of number fields*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR**2392026**, DOI 10.1007/978-3-540-37889-1 - The PARI Group, PARI/GP development version 2.8.0, Bordeaux, 2015, http://pari.math.u-bordeaux.fr/
- Jordi Quer,
*Liftings of projective $2$-dimensional Galois representations and embedding problems*, J. Algebra**171**(1995), no. 2, 541–566. MR**1315912**, DOI 10.1006/jabr.1995.1027 - Kenneth A. Ribet,
*On $l$-adic representations attached to modular forms. II*, Glasgow Math. J.**27**(1985), 185–194. MR**819838**, DOI 10.1017/S0017089500006170 -
*SAGE mathematics software*, version 5.3. http://sagemath.org/. - Jean-Pierre Serre,
*Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR**554237** - H. P. F. Swinnerton-Dyer,
*On $l$-adic representations and congruences for coefficients of modular forms*, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 1–55. MR**0406931**

## Additional Information

**Nicolas Mascot**- Affiliation: IMB, Université Bordeaux 1, UMR 5251, F-33400 Talence, France – and – CNRS, IMB, UMR 5251, F-33400 Talence, France – and – INRIA, project LFANT, F-33400 Talence, France
- Address at time of publication: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 1040021
- Email: n.a.v.mascot@warwick.ac.uk
- Received by editor(s): October 28, 2015
- Received by editor(s) in revised form: December 9, 2015, and April 6, 2016
- Published electronically: June 21, 2017
- Additional Notes: This research was supported by the French ANR-12-BS01-0010-01 through the project PEACE, by the DGA maîtrise de l’information, by ERC Starting Grant ANTICS 278537, and by the EPSRC Programme Grant EP/K034383/1 “LMF: L-Functions and Modular Forms”
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp.
**87**(2018), 381-423 - MSC (2010): Primary 11Y70, 11S20, 11F80, 11F11, 11Y40, 20B40, 20J06
- DOI: https://doi.org/10.1090/mcom/3215
- MathSciNet review: 3716200