Error estimates for the AEDG method to one-dimensional linear convection-diffusion equations
HTML articles powered by AMS MathViewer
- by Hailiang Liu and Hairui Wen;
- Math. Comp. 87 (2018), 123-148
- DOI: https://doi.org/10.1090/mcom/3226
- Published electronically: May 1, 2017
- PDF | Request permission
Abstract:
We study the error estimates for the alternating evolution discontinuous Galerkin (AEDG) method to one-dimensional linear convection-diffusion equations. The AEDG method for general convection-diffusion equations was introduced by H. Liu and M. Pollack [J. Comp. Phys. 307 (2016), 574–592], where stability of the semi-discrete scheme was rigorously proved for linear problems under a CFL-like stability condition $\epsilon < Qh^2$. Here $\epsilon$ is the method parameter, and $h$ is the maximum spatial grid size. In this work, we establish optimal $L^2$ error estimates of order $O(h^{k+1})$ for $k$-th degree polynomials, under the same stability condition with $\epsilon \sim h^2$. For a fully discrete scheme with the forward Euler temporal discretization, we further obtain the $L^2$ error estimate of order $O(\tau +h^{k+1})$, under the stability condition $c_0\tau \le \epsilon < Qh^2$ for time step $\tau$; and an error of order $O(\tau ^2+h^{k+1})$ for the Crank-Nicolson time discretization with any time step $\tau$. Key tools include two approximation spaces to distinguish overlapping polynomials, two bi-linear operators, coupled global projections, and a duality argument adapted to the situation with overlapping polynomials.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 178246
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131 (1997), no. 2, 267–279. MR 1433934, DOI 10.1006/jcph.1996.5572
- Carlos Erik Baumann and J. Tinsley Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 311–341. MR 1702201, DOI 10.1016/S0045-7825(98)00359-4
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Paul Castillo, An optimal estimate for the local discontinuous Galerkin method, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 285–290. MR 1842183, DOI 10.1007/978-3-642-59721-3_{2}3
- Paul Castillo, Bernardo Cockburn, Dominik Schötzau, and Christoph Schwab, Optimal a priori error estimates for the $hp$-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp. 71 (2002), no. 238, 455–478. MR 1885610, DOI 10.1090/S0025-5718-01-01317-5
- Yao Cheng, Xiong Meng, and Qiang Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp. 86 (2017), no. 305, 1233–1267. MR 3614017, DOI 10.1090/mcom/3141
- Yingda Cheng and Chi-Wang Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Math. Comp. 77 (2008), no. 262, 699–730. MR 2373176, DOI 10.1090/S0025-5718-07-02045-5
- Bernardo Cockburn, Bo Dong, and Johnny Guzmán, Optimal convergence of the original DG method for the transport-reaction equation on special meshes, SIAM J. Numer. Anal. 46 (2008), no. 3, 1250–1265. MR 2390992, DOI 10.1137/060677215
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger, Time dependent problems and difference methods, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1377057
- C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1–26. MR 815828, DOI 10.1090/S0025-5718-1986-0815828-4
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York-London, 1974, pp. 89–123. MR 658142
- Hailiang Liu, An alternating evolution approximation to systems of hyperbolic conservation laws, J. Hyperbolic Differ. Equ. 5 (2008), no. 2, 421–447. MR 2420005, DOI 10.1142/S0219891608001568
- Hailiang Liu, Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations, Math. Comp. 84 (2015), no. 295, 2263–2295. MR 3356026, DOI 10.1090/S0025-5718-2015-02923-8
- Hailiang Liu, Michael Pollack, and Haseena Saran, Alternating evolution schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 35 (2013), no. 1, A122–A149. MR 3033040, DOI 10.1137/120862806
- Hailiang Liu and Michael Pollack, Alternating evolution discontinuous Galerkin methods for Hamilton-Jacobi equations, J. Comput. Phys. 258 (2014), 31–46. MR 3145268, DOI 10.1016/j.jcp.2013.09.038
- Hailiang Liu and Michael Pollack, Alternating evolution discontinuous Galerkin methods for convection–diffusion equations, J. Comput. Phys. 307 (2016), 574–592. MR 3448225, DOI 10.1016/j.jcp.2015.12.017
- Hailiang Liu and Jue Yan, The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections, Commun. Comput. Phys. 8 (2010), no. 3, 541–564. MR 2673775, DOI 10.4208/cicp.010909.011209a
- Yingjie Liu, Central schemes on overlapping cells, J. Comput. Phys. 209 (2005), no. 1, 82–104. MR 2145783, DOI 10.1016/j.jcp.2005.03.014
- Yingjie Liu, Chi-Wang Shu, Eitan Tadmor, and Mengping Zhang, $L^2$ stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods, M2AN Math. Model. Numer. Anal. 42 (2008), no. 4, 593–607. MR 2437775, DOI 10.1051/m2an:2008018
- Yingjie Liu, Chi-Wang Shu, Eitan Tadmor, and Mengping Zhang, Central local discontinuous Galerkin methods on overlapping cells for diffusion equations, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 6, 1009–1032. MR 2833171, DOI 10.1051/m2an/2011007
- J. Tinsley Oden, Ivo Babuška, and Carlos Erik Baumann, A discontinuous $hp$ finite element method for diffusion problems, J. Comput. Phys. 146 (1998), no. 2, 491–519. MR 1654911, DOI 10.1006/jcph.1998.6032
- Todd E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 133–140. MR 1083327, DOI 10.1137/0728006
- Gerard R. Richter, An optimal-order error estimate for the discontinuous Galerkin method, Math. Comp. 50 (1988), no. 181, 75–88. MR 917819, DOI 10.1090/S0025-5718-1988-0917819-3
- Béatrice Rivière and Mary F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 231–244. MR 1842177, DOI 10.1007/978-3-642-59721-3_{1}7
- Haseena Saran and Hailiang Liu, Alternating evolution schemes for hyperbolic conservation laws, SIAM J. Sci. Comput. 33 (2011), no. 6, 3210–3240. MR 2862011, DOI 10.1137/080733577
- T. Warburton and J. S. Hesthaven, On the constants in $hp$-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 25, 2765–2773. MR 1986022, DOI 10.1016/S0045-7825(03)00294-9
- Mary Fanett Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161. MR 471383, DOI 10.1137/0715010
- Haijin Wang, Chi-Wang Shu, and Qiang Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal. 53 (2015), no. 1, 206–227. MR 3296621, DOI 10.1137/140956750
- Haijin Wang and Qiang Zhang, Error estimate on a fully discrete local discontinuous Galerkin method for linear convection-diffusion problem, J. Comput. Math. 31 (2013), no. 3, 283–307. MR 3063737, DOI 10.4208/jcm.1212-m4174
- Yan Xu and Chi-Wang Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3805–3822. MR 2340006, DOI 10.1016/j.cma.2006.10.043
- Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2, 641–666. MR 2084230, DOI 10.1137/S0036142902404182
- Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws, SIAM J. Numer. Anal. 44 (2006), no. 4, 1703–1720. MR 2257123, DOI 10.1137/040620382
Bibliographic Information
- Hailiang Liu
- Affiliation: Department of Mathematics, Iowa State University, Ames, Iowa 50011
- Email: hliu@iastate.edu
- Hairui Wen
- Affiliation: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100080, People’s Republic of China
- MR Author ID: 753749
- Email: wenhr@bit.edu.cn
- Received by editor(s): April 5, 2016
- Received by editor(s) in revised form: August 30, 2016
- Published electronically: May 1, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 123-148
- MSC (2010): Primary 65M15, 65M60, 35K20
- DOI: https://doi.org/10.1090/mcom/3226
- MathSciNet review: 3716191