Zariski density and computing in arithmetic groups
HTML articles powered by AMS MathViewer
- by A. Detinko, D. L. Flannery and A. Hulpke;
- Math. Comp. 87 (2018), 967-986
- DOI: https://doi.org/10.1090/mcom/3236
- Published electronically: August 7, 2017
- PDF | Request permission
Abstract:
For $n > 2$, let $\Gamma _n$ denote either $\mathrm {SL}(n, \mathbb {Z})$ or $\mathrm {Sp}(n, \mathbb {Z})$. We give a practical algorithm to compute the level of the maximal principal congruence subgroup in an arithmetic group $H\leq \Gamma _n$. This forms the main component of our methods for computing with such arithmetic groups $H$. More generally, we provide algorithms for computing with Zariski dense groups in $\Gamma _n$. We use our GAP implementation of the algorithms to solve problems that have emerged recently for important classes of linear groups.References
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514. MR 746539, DOI 10.1007/BF01388470
- H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for $\textrm {SL}_{n}\,(n\geq 3)$ and $\textrm {Sp}_{2n}\,(n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 244257
- Bert Beisiegel, Die Automorphismengruppen homozyklischer $p$-Gruppen, Arch. Math. (Basel) 29 (1977), no. 4, 363–366 (German). MR 473016, DOI 10.1007/BF01220419
- F. Beukers and G. Heckman, Monodromy for the hypergeometric function $_nF_{n-1}$, Invent. Math. 95 (1989), no. 2, 325–354. MR 974906, DOI 10.1007/BF01393900
- Christopher Brav and Hugh Thomas, Thin monodromy in Sp(4), Compos. Math. 150 (2014), no. 3, 333–343. MR 3187621, DOI 10.1112/S0010437X13007550
- John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, vol. 407, Cambridge University Press, Cambridge, 2013. With a foreword by Martin Liebeck. MR 3098485, DOI 10.1017/CBO9781139192576
- Emmanuel Breuillard, Approximate subgroups and super-strong approximation, Groups St Andrews 2013, London Math. Soc. Lecture Note Ser., vol. 422, Cambridge Univ. Press, Cambridge, 2015, pp. 1–50. MR 3445486
- Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E. A. O’Brien, Generating random elements of a finite group, Comm. Algebra 23 (1995), no. 13, 4931–4948. MR 1356111, DOI 10.1080/00927879508825509
- Yao-Han Chen, Yifan Yang, and Noriko Yui, Monodromy of Picard-Fuchs differential equations for Calabi-Yau threefolds, J. Reine Angew. Math. 616 (2008), 167–203. With an appendix by Cord Erdenberger. MR 2369490, DOI 10.1515/CRELLE.2008.021
- Harm Derksen, Emmanuel Jeandel, and Pascal Koiran, Quantum automata and algebraic groups, J. Symbolic Comput. 39 (2005), no. 3-4, 357–371. MR 2168287, DOI 10.1016/j.jsc.2004.11.008
- A. S. Detinko, D. L. Flannery, and A. Hulpke, Algorithms for arithmetic groups with the congruence subgroup property, J. Algebra 421 (2015), 234–259. MR 3272380, DOI 10.1016/j.jalgebra.2014.08.027
- A. S. Detinko, D. L. Flannery, and A. Hulpke, Strong approximation and experimenting with linear groups, preprint (2016).
- A. S. Detinko, D. L. Flannery, and E. A. O’Brien, Recognizing finite matrix groups over infinite fields, J. Symbolic Comput. 50 (2013), 100–109. MR 2996870, DOI 10.1016/j.jsc.2012.04.002
- A. S. Detinko, D. L. Flannery, and E. A. O’Brien, Algorithms for the Tits alternative and related problems, J. Algebra 344 (2011), 397–406. MR 2831949, DOI 10.1016/j.jalgebra.2011.06.036
- The GAP Group, GAP – Groups, Algorithms, and Programming, http://www.gap-system.org
- Fritz Grunewald and Daniel Segal, Some general algorithms. I. Arithmetic groups, Ann. of Math. (2) 112 (1980), no. 3, 531–583. MR 595206, DOI 10.2307/1971091
- Alexander J. Hahn and O. Timothy O’Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. Dieudonné. MR 1007302, DOI 10.1007/978-3-662-13152-7
- Jörg Hofmann and Duco van Straten, Some monodromy groups of finite index in $Sp_4(\Bbb {Z})$, J. Aust. Math. Soc. 99 (2015), no. 1, 48–62. MR 3358302, DOI 10.1017/S1446788715000014
- Alexander Hulpke, Computing generators of groups preserving a bilinear form over residue class rings, J. Symbolic Comput. 50 (2013), 298–307. MR 2996881, DOI 10.1016/j.jsc.2012.08.002
- A. Hulpke, The GAP package matgrp, http://www.math.colostate.edu/~hulpke/matgrp/.
- James E. Humphreys, Arithmetic groups, Lecture Notes in Mathematics, vol. 789, Springer, Berlin, 1980. MR 584623
- Stephen P. Humphries, Free subgroups of $\textrm {SL}(n,\textbf {Z}),\;n>2,$ generated by transvections, J. Algebra 116 (1988), no. 1, 155–162. MR 944152, DOI 10.1016/0021-8693(88)90198-6
- M. Kassabov, private communication.
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418–443. MR 360852, DOI 10.1016/0021-8693(74)90150-1
- D. D. Long and A. W. Reid, Small subgroups of $\textrm {SL}(3,\Bbb Z)$, Exp. Math. 20 (2011), no. 4, 412–425. MR 2859899, DOI 10.1080/10586458.2011.565258
- Alexander Lubotzky, One for almost all: generation of $\textrm {SL}(n,p)$ by subsets of $\textrm {SL}(n,\textbf {Z})$, Algebra, $K$-theory, groups, and education (New York, 1997) Contemp. Math., vol. 243, Amer. Math. Soc., Providence, RI, 1999, pp. 125–128. MR 1732043, DOI 10.1090/conm/243/03689
- Alexander Lubotzky, Dimension function for discrete groups, Proceedings of groups—St. Andrews 1985, London Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 254–262. MR 896520
- Alexander Lubotzky and Chen Meiri, Sieve methods in group theory I: Powers in linear groups, J. Amer. Math. Soc. 25 (2012), no. 4, 1119–1148. MR 2947947, DOI 10.1090/S0894-0347-2012-00736-X
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- C. R. Matthews, L. N. Vaserstein, and B. Weisfeiler, Congruence properties of Zariski-dense subgroups. I, Proc. London Math. Soc. (3) 48 (1984), no. 3, 514–532. MR 735226, DOI 10.1112/plms/s3-48.3.514
- Chen Meiri, Generating pairs for finite index subgroups of $\textrm {SL}(n,\Bbb Z)$, J. Algebra 470 (2017), 420–424. MR 3565440, DOI 10.1016/j.jalgebra.2016.09.026
- M. Neunhöffer, Á. Seress, et al., The GAP package recog, a collection of group recognition methods, http://gap-packages.github.io/recog/.
- I. Rivin, Large Galois groups with applications to Zariski density, http://arxiv.org/abs/1312.3009v4.
- Igor Rivin, Zariski density and genericity, Int. Math. Res. Not. IMRN 19 (2010), 3649–3657. MR 2725508, DOI 10.1093/imrn/rnq043
- Peter Sarnak, Notes on thin matrix groups, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., vol. 61, Cambridge Univ. Press, Cambridge, 2014, pp. 343–362. MR 3220897
- Sandip Singh, Arithmeticity of four hypergeometric monodromy groups associated to Calabi-Yau threefolds, Int. Math. Res. Not. IMRN 18 (2015), 8874–8889. MR 3417696, DOI 10.1093/imrn/rnu217
- Sandip Singh and T. N. Venkataramana, Arithmeticity of certain symplectic hypergeometric groups, Duke Math. J. 163 (2014), no. 3, 591–617. MR 3165424, DOI 10.1215/00127094-2410655
- G. A. Soifer and T. N. Venkataramana, Finitely generated profinitely dense free groups in higher rank semi-simple groups, Transform. Groups 5 (2000), no. 1, 93–100. MR 1745714, DOI 10.1007/BF01237181
- T. N. Venkataramana, Zariski dense subgroups of arithmetic groups, J. Algebra 108 (1987), no. 2, 325–339. MR 892908, DOI 10.1016/0021-8693(87)90106-2
- Thomas Weigel, On a certain class of Frattini extensions of finite Chevalley groups, Groups of Lie type and their geometries (Como, 1993) London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 281–288. MR 1320526, DOI 10.1017/CBO9780511565823.019
- Thomas Weigel, On the profinite completion of arithmetic groups of split type, Lois d’algèbres et variétés algébriques (Colmar, 1991) Travaux en Cours, vol. 50, Hermann, Paris, 1996, pp. 79–101. MR 1600994
- A. E. Zalesskiĭ and V. N. Serežkin, Linear groups generated by transvections, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 1, 26–49, 221 (Russian). MR 412295
Bibliographic Information
- A. Detinko
- Affiliation: School of Computer Science, University of St Andrews, North Haugh, St Andrews, KY16 9SX, United Kingdom
- MR Author ID: 335525
- D. L. Flannery
- Affiliation: School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland
- MR Author ID: 350842
- A. Hulpke
- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523-1874
- MR Author ID: 600556
- ORCID: 0000-0002-5210-6283
- Received by editor(s): June 14, 2016
- Received by editor(s) in revised form: October 5, 2016, and October 26, 2016
- Published electronically: August 7, 2017
- Additional Notes: The first and second authors received support from the Irish Research Council (grants ‘MatGpAlg’ and ‘MatGroups’) and Science Foundation Ireland (grant 11/RFP.1/MTH/3212). The first author is also funded by a Marie Skłodowska-Curie Individual Fellowship grant under Horizon 2020 (EU Framework Programme for Research and Innovation).
The third author was supported by Simons Foundation Collaboration Grant 244502 - © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 967-986
- MSC (2010): Primary 20H05, 20B40
- DOI: https://doi.org/10.1090/mcom/3236
- MathSciNet review: 3739225