On the torsion of rational elliptic curves over quartic fields
HTML articles powered by AMS MathViewer
- by Enrique González-Jiménez and Álvaro Lozano-Robledo;
- Math. Comp. 87 (2018), 1457-1478
- DOI: https://doi.org/10.1090/mcom/3235
- Published electronically: August 3, 2017
- PDF | Request permission
Abstract:
Let $E$ be an elliptic curve defined over $\mathbb {Q}$ and let $G = E(\mathbb {Q})_{\mathrm {tors}}$ be the associated torsion subgroup. We study, for a given $G$, which possible groups $G \subseteq H$ could appear such that $H=E(K)_{\mathrm {tors}}$, for $[K:\mathbb {Q}]=4$ and $H$ is one of the possible torsion structures that occur infinitely often as torsion structures of elliptic curves defined over quartic number fields.References
- B. J. Birch and W. Kuyk (eds.), Modular functions of one variable. IV, Lecture Notes in Mathematics, Vol. 476, Springer-Verlag, Berlin-New York, 1975. MR 376533
- W. Bosma, J. Cannon, C. Fieker, and A. Steel (eds.), Handbook of Magma functions, Edition 2.20, http://magma.maths.usyd.edu.au/magma, 2015.
- Peter Bruin and Filip Najman, A criterion to rule out torsion groups for elliptic curves over number fields, Res. Number Theory 2 (2016), Paper No. 3, 13. MR 3501016, DOI 10.1007/s40993-015-0031-5
- Michael Chou, Torsion of rational elliptic curves over quartic Galois number fields, J. Number Theory 160 (2016), 603–628. MR 3425225, DOI 10.1016/j.jnt.2015.09.013
- Pete L. Clark, Patrick Corn, Alex Rice, and James Stankewicz, Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), no. 1, 509–535. MR 3356044, DOI 10.1112/S1461157014000072
- J. E. Cremona, Elliptic curve data for conductors up to 350.000, Available on http://www.warwick.ac.uk/ masgaj/ftp/data, 2015.
- M. Derickx, S. Kamienny, W. Stein, and M. Stoll, Torsion points on elliptic curves over number fields of small degree, preprint, arXiv:1707.00364.
- M. Derickx and A. V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic fields, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4233–4245, DOI 10.1090/proc/13605.
- N. Elkies, Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9, arXiv:math/0612734
- Noam D. Elkies, Elliptic and modular curves over finite fields and related computational issues, Computational perspectives on number theory (Chicago, IL, 1995) AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 21–76. MR 1486831, DOI 10.1090/amsip/007/03
- N. Elkies, Explicit Modular Towers, in Proceedings of the Thirty-Fifth Annual Allerton Conference on Communication, Control and Computing (1997, T. Basar, A. Vardy, eds.), Univ. of Illinois at Urbana-Champaign 1998, pp. 23–32 (math.NT/0103107 on the arXiv).
- R. Fricke and F. Klein, Vorlesungen über die Theorie der elliptischen Modulfunctionen, (Volumes 1 and 2), B. G. Teubner, Leipzig 1890, 1892.
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, Leipzig-Berlin, 1922.
- G. W. Fung, H. Ströher, H. C. Williams, and H. G. Zimmer, Torsion groups of elliptic curves with integral $j$-invariant over pure cubic fields, J. Number Theory 36 (1990), no. 1, 12–45. MR 1068671, DOI 10.1016/0022-314X(90)90003-A
- Enrique González-Jiménez, Complete classification of the torsion structures of rational elliptic curves over quintic number fields, J. Algebra 478 (2017), 484–505. MR 3621686, DOI 10.1016/j.jalgebra.2017.01.012
- Enrique González-Jiménez and Josep González, Modular curves of genus 2, Math. Comp. 72 (2003), no. 241, 397–418. MR 1933828, DOI 10.1090/S0025-5718-02-01458-8
- Enrique González-Jiménez and Álvaro Lozano-Robledo, Elliptic curves with abelian division fields, Math. Z. 283 (2016), no. 3-4, 835–859. MR 3519984, DOI 10.1007/s00209-016-1623-z
- E. González–Jiménez and F. Najman, Growth of torsion groups of elliptic curves upon base change, preprint, arXiv:1609.02515.
- Enrique González-Jiménez, Filip Najman, and José M. Tornero, Torsion of rational elliptic curves over cubic fields, Rocky Mountain J. Math. 46 (2016), no. 6, 1899–1917. MR 3591265, DOI 10.1216/RMJ-2016-46-6-1899
- Enrique González-Jiménez and José M. Tornero, Torsion of rational elliptic curves over quadratic fields, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108 (2014), no. 2, 923–934. MR 3249985, DOI 10.1007/s13398-013-0152-4
- Enrique González-Jiménez and José M. Tornero, Torsion of rational elliptic curves over quadratic fields II, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110 (2016), no. 1, 121–143. MR 3462078, DOI 10.1007/s13398-015-0223-9
- Noburo Ishii, Rational expression for $j$-invariant function in terms of generators of modular function fields, Int. Math. Forum 2 (2007), no. 37-40, 1877–1894. MR 2341166, DOI 10.12988/imf.2007.07167
- Daeyeol Jeon, Families of elliptic curves over cyclic cubic number fields with prescribed torsion, Math. Comp. 85 (2016), no. 299, 1485–1502. MR 3454372, DOI 10.1090/mcom/3012
- Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over cubic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 273, 579–591. MR 2728995, DOI 10.1090/S0025-5718-10-02369-0
- Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Infinite families of elliptic curves over dihedral quartic number fields, J. Number Theory 133 (2013), no. 1, 115–122. MR 2981403, DOI 10.1016/j.jnt.2012.06.014
- Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves with prescribed torsion subgroups over dihedral quartic fields, J. Number Theory 147 (2015), 342–363. MR 3276329, DOI 10.1016/j.jnt.2014.07.014
- Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), no. 3, 291–301. MR 2069117, DOI 10.4064/aa113-3-6
- Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1–12. MR 2254548, DOI 10.1112/S0024610706022940
- S. Kamienny, Torsion points on elliptic curves and $q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221–229. MR 1172689, DOI 10.1007/BF01232025
- M. A. Kenku, On the number of $\textbf {Q}$-isomorphism classes of elliptic curves in each $\textbf {Q}$-isogeny class, J. Number Theory 15 (1982), no. 2, 199–202. MR 675184, DOI 10.1016/0022-314X(82)90025-7
- M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125–149. MR 931956, DOI 10.1017/S0027763000002816
- Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. MR 434947, DOI 10.1112/plms/s3-33.2.193
- Soonhak Kwon, Torsion subgroups of elliptic curves over quadratic extensions, J. Number Theory 62 (1997), no. 1, 144–162. MR 1430007, DOI 10.1006/jnth.1997.2036
- Álvaro Lozano-Robledo, On the field of definition of $p$-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013), no. 1, 279–305. MR 3084348, DOI 10.1007/s00208-013-0906-5
- Robert S. Maier, On rationally parametrized modular equations, J. Ramanujan Math. Soc. 24 (2009), no. 1, 1–73. MR 2514149
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449 (French). MR 1369424, DOI 10.1007/s002220050059
- Hans H. Müller, Harald Ströher, and Horst G. Zimmer, Torsion groups of elliptic curves with integral $j$-invariant over quadratic fields, J. Reine Angew. Math. 397 (1989), 100–161. MR 993219
- Filip Najman, Torsion of elliptic curves over cubic fields, J. Number Theory 132 (2012), no. 1, 26–36. MR 2843296, DOI 10.1016/j.jnt.2011.06.013
- Filip Najman, Exceptional elliptic curves over quartic fields, Int. J. Number Theory 8 (2012), no. 5, 1231–1246. MR 2949198, DOI 10.1142/S1793042112500716
- Filip Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245–272. MR 3512885, DOI 10.4310/MRL.2016.v23.n1.a12
- Filip Najman, The number of twists with large torsion of an elliptic curve, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109 (2015), no. 2, 535–547. MR 3383431, DOI 10.1007/s13398-014-0199-x
- Loren D. Olson, Points of finite order on elliptic curves with complex multiplication, Manuscripta Math. 14 (1974), 195–205. MR 352104, DOI 10.1007/BF01171442
- Attila Pethö, Thomas Weis, and Horst G. Zimmer, Torsion groups of elliptic curves with integral $j$-invariant over general cubic number fields, Internat. J. Algebra Comput. 7 (1997), no. 3, 353–413. MR 1448331, DOI 10.1142/S0218196797000174
- Pierre Parent, No 17-torsion on elliptic curves over cubic number fields, J. Théor. Nombres Bordeaux 15 (2003), no. 3, 831–838 (English, with English and French summaries). MR 2142238
- Pierre Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math. 506 (1999), 85–116 (French, with French summary). MR 1665681, DOI 10.1515/crll.1999.009
- Norbert Schappacher and René Schoof, Beppo Levi and the arithmetic of elliptic curves, Math. Intelligencer 18 (1996), no. 1, 57–69. MR 1381581, DOI 10.1007/BF03024818
- A. V. Sutherland, Torsion subgroups of elliptic curves over number fields Available on https://math.mit.edu/ drew/MazursTheoremSubsequentResults.pdf, 2012.
- Andrew V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016), Paper No. e4, 79. MR 3482279, DOI 10.1017/fms.2015.33
- Jian Wang, On the torsion structure of elliptic curves over cubic number fields, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–University of Southern California. MR 3438857
- D. Zywina, On the possible images of the mod $\ell$ representations associated to elliptic curves over $\mathbb {Q}$, arXiv:1508.07660.
Bibliographic Information
- Enrique González-Jiménez
- Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain
- MR Author ID: 703386
- Email: enrique.gonzalez.jimenez@uam.es
- Álvaro Lozano-Robledo
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- Email: alvaro.lozano-robledo@uconn.edu
- Received by editor(s): April 4, 2016
- Received by editor(s) in revised form: November 1, 2016
- Published electronically: August 3, 2017
- Additional Notes: The first author was partially supported by the grant MTM2015–68524–P
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 1457-1478
- MSC (2010): Primary 11G05; Secondary 14H52, 14G05, 11R16
- DOI: https://doi.org/10.1090/mcom/3235
- MathSciNet review: 3766394