Stabilized nonconforming finite element methods for data assimilation in incompressible flows
HTML articles powered by AMS MathViewer
- by Erik Burman and Peter Hansbo;
- Math. Comp. 87 (2018), 1029-1050
- DOI: https://doi.org/10.1090/mcom/3255
- Published electronically: September 19, 2017
- PDF | Request permission
Abstract:
We consider a stabilized nonconforming finite element method for data assimilation in incompressible flow subject to the Stokes equations. The method uses a primal dual structure that allows for the inclusion of nonstandard data. Error estimates are obtained that are optimal compared to the conditional stability of the ill-posed data assimilation problem.References
- Y. Achdou, C. Bernardi, and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations, Numer. Math. 96 (2003), no. 1, 17–42. MR 2018789, DOI 10.1007/s00211-002-0436-7
- Giovanni Alessandrini, Luca Rondi, Edi Rosset, and Sergio Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems 25 (2009), no. 12, 123004, 47. MR 2565570, DOI 10.1088/0266-5611/25/12/123004
- Mehdi Badra, Fabien Caubet, and Jérémi Dardé, Stability estimates for Navier-Stokes equations and application to inverse problems, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 8, 2379–2407. MR 3555120, DOI 10.3934/dcdsb.2016052
- A. Ben Abda, I. B. Saad, and M. Hassine, Data completion for the Stokes system, Comptes Rendus Mecanique 337 (2009), no. 9–10, 703–708.
- Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958, DOI 10.1007/978-3-642-36519-5
- Muriel Boulakia, Anne-Claire Egloffe, and Céline Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem, Inverse Problems 29 (2013), no. 11, 115001, 21. MR 3116337, DOI 10.1088/0266-5611/29/11/115001
- Laurent Bourgeois and Jérémi Dardé, The “exterior approach” to solve the inverse obstacle problem for the Stokes system, Inverse Probl. Imaging 8 (2014), no. 1, 23–51. MR 3180411, DOI 10.3934/ipi.2014.8.23
- Erik Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations, SIAM J. Sci. Comput. 35 (2013), no. 6, A2752–A2780. MR 3134434, DOI 10.1137/130916862
- Erik Burman, Error estimates for stabilized finite element methods applied to ill-posed problems, C. R. Math. Acad. Sci. Paris 352 (2014), no. 7-8, 655–659 (English, with English and French summaries). MR 3237821, DOI 10.1016/j.crma.2014.06.008
- Erik Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem, Math. Comp. 86 (2017), no. 303, 75–96. MR 3557794, DOI 10.1090/mcom/3092
- Erik Burman and Peter Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986–997. MR 2154230, DOI 10.1002/num.20076
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Daniele Antonio Di Pietro and Alexandre Ern, Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148, DOI 10.1007/978-3-642-22980-0
- Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138, DOI 10.1007/978-1-4757-4355-5
- Caroline Fabre and Gilles Lebeau, Prolongement unique des solutions de l’equation de Stokes, Comm. Partial Differential Equations 21 (1996), no. 3-4, 573–596 (French, with English and French summaries). MR 1387461, DOI 10.1080/03605309608821198
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Peter Hansbo and Mats G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 17-18, 1895–1908. MR 1886000, DOI 10.1016/S0045-7825(01)00358-9
- Peter Hansbo and Mats G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity, M2AN Math. Model. Numer. Anal. 37 (2003), no. 1, 63–72. MR 1972650, DOI 10.1051/m2an:2003020
- F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3-4, 251–265. MR 3043640, DOI 10.1515/jnum-2012-0013
- Ronald H. W. Hoppe and Barbara Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 2, 237–263 (English, with English and French summaries). MR 1382112, DOI 10.1051/m2an/1996300202371
- Ohannes A. Karakashian and Frederic Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374–2399. MR 2034620, DOI 10.1137/S0036142902405217
- Ching-Lung Lin, Gunther Uhlmann, and Jenn-Nan Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1273–1290. MR 2644789, DOI 10.3934/dcds.2010.28.1273
- G. Seregin, Lecture notes on regularity theory for the Navier-Stokes equations, Oxford University, 2014.
- C. Wang and J. Wang, A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form, Math. Comp., electronically published on June 27, 2017, DOI: https://doi.org/10.1090/mcom/3220 (to appear in print).
Bibliographic Information
- Erik Burman
- Affiliation: Department of Mathematics, University College London, London, UK-WC1E 6BT, United Kingdom
- MR Author ID: 602430
- Email: e.burman@ucl.ac.uk
- Peter Hansbo
- Affiliation: Department of Mechanical Engineering, Jönköping University, SE-55111 Jönköping, Sweden
- MR Author ID: 269716
- Email: peter.hansbo@ju.se
- Received by editor(s): March 21, 2016
- Received by editor(s) in revised form: November 14, 2016
- Published electronically: September 19, 2017
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 1029-1050
- MSC (2010): Primary 65N30, 65N20; Secondary 65N12, 76D07, 76D55
- DOI: https://doi.org/10.1090/mcom/3255
- MathSciNet review: 3766380