On the mesh nonsingularity of the moving mesh PDE method
HTML articles powered by AMS MathViewer
- by Weizhang Huang and Lennard Kamenski;
- Math. Comp. 87 (2018), 1887-1911
- DOI: https://doi.org/10.1090/mcom/3271
- Published electronically: October 2, 2017
- PDF | Request permission
Abstract:
The moving mesh PDE (MMPDE) method for variational mesh generation and adaptation is studied theoretically at the discrete level, in particular the nonsingularity of the obtained meshes. Meshing functionals are discretized geometrically and the MMPDE is formulated as a modified gradient system of the corresponding discrete functionals for the location of mesh vertices. It is shown that if the meshing functional satisfies a coercivity condition, then the mesh of the semi-discrete MMPDE is nonsingular for all time if it is nonsingular initially. Moreover, the altitudes and volumes of its elements are bounded below by positive numbers depending only on the number of elements, the metric tensor, and the initial mesh. Furthermore, the value of the discrete meshing functional is convergent as time increases, which can be used as a stopping criterion in computation. Finally, the mesh trajectory has limiting meshes which are critical points of the discrete functional. The convergence of the mesh trajectory can be guaranteed when a stronger condition is placed on the meshing functional. Two meshing functionals based on alignment and equidistribution are known to satisfy the coercivity condition. The results also hold for fully discrete systems of the MMPDE provided that the time step is sufficiently small and a numerical scheme preserving the property of monotonically decreasing energy is used for the temporal discretization of the semi-discrete MMPDE. Numerical examples are presented.References
- G. Beckett, J. A. Mackenzie, and M. L. Robertson, A moving mesh finite element method for the solution of two-dimensional Stefan problems, J. Comput. Phys. 168 (2001), no. 2, 500–518. MR 1826524, DOI 10.1006/jcph.2001.6721
- J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys. 46 (1982), no. 3, 342–368. MR 673707, DOI 10.1016/0021-9991(82)90020-1
- Graham F. Carey, Computational grids, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, Washington, DC, 1997. Generation, adaptation, and solution strategies. MR 1483891
- F. Dassi, L. Kamenski, and H. Si, Tetrahedral mesh improvement using moving mesh smoothing and lazy searching flips, Procedia Eng. 163 (2016), 302–314, 25th International Meshing Roundtable.
- Arkady S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys. 95 (1991), no. 2, 450–476. MR 1117849, DOI 10.1016/0021-9991(91)90285-S
- Lori A. Freitag and Carl Ollivier-Gooch, Tetrahedral mesh improvement using swapping and smoothing, Internat. J. Numer. Methods Engrg. 40 (1997), no. 21, 3979–4002. MR 1475347, DOI 10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9
- Martin J. Gander and Ronald D. Haynes, Domain decomposition approaches for mesh generation via the equidistribution principle, SIAM J. Numer. Anal. 50 (2012), no. 4, 2111–2135. MR 3022212, DOI 10.1137/110849936
- I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963. Revised English edition translated and edited by Richard A. Silverman. MR 160139
- Ernst Hairer and Christian Lubich, Energy-diminishing integration of gradient systems, IMA J. Numer. Anal. 34 (2014), no. 2, 452–461. MR 3194795, DOI 10.1093/imanum/drt031
- Ronald D. Haynes and Felix Kwok, Discrete analysis of domain decomposition approaches for mesh generation via the equidistribution principle, Math. Comp. 86 (2017), no. 303, 233–273. MR 3557799, DOI 10.1090/mcom/3095
- Weizhang Huang, Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys. 174 (2001), no. 2, 903–924. MR 1868106, DOI 10.1006/jcph.2001.6945
- Weizhang Huang, Metric tensors for anisotropic mesh generation, J. Comput. Phys. 204 (2005), no. 2, 633–665. MR 2131856, DOI 10.1016/j.jcp.2004.10.024
- Weizhang Huang and Lennard Kamenski, A geometric discretization and a simple implementation for variational mesh generation and adaptation, J. Comput. Phys. 301 (2015), 322–337. MR 3402733, DOI 10.1016/j.jcp.2015.08.032
- W. Huang, L. Kamenski, and H. Si, Mesh smoothing: an MMPDE approach, 2015, Research note at the 24th International Meshing Roundtable, WIAS Preprint No. 2130.
- Weizhang Huang, Yuhe Ren, and Robert D. Russell, Moving mesh methods based on moving mesh partial differential equations, J. Comput. Phys. 113 (1994), no. 2, 279–290. MR 1284854, DOI 10.1006/jcph.1994.1135
- Weizhang Huang, Yuhe Ren, and Robert D. Russell, Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal. 31 (1994), no. 3, 709–730. MR 1275109, DOI 10.1137/0731038
- Weizhang Huang and Robert D. Russell, A high-dimensional moving mesh strategy, Proceedings of the International Centre for Mathematical Sciences Conference on Grid Adaptation in Computational PDEs: Theory and Applications (Edinburgh, 1996), 1998, pp. 63–76. MR 1602828, DOI 10.1016/S0168-9274(97)00082-2
- Weizhang Huang and Robert D. Russell, Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput. 20 (1999), no. 3, 998–1015. MR 1665654, DOI 10.1137/S1064827596315242
- Weizhang Huang and Robert D. Russell, Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174, Springer, New York, 2011. MR 2722625, DOI 10.1007/978-1-4419-7916-2
- Weizhang Huang and Weiwei Sun, Variational mesh adaptation. II. Error estimates and monitor functions, J. Comput. Phys. 184 (2003), no. 2, 619–648. MR 1959407, DOI 10.1016/S0021-9991(02)00040-2
- W. Huang and Y. Wang, Anisotropic mesh quality measures and adaptation for polygonal meshes, submitted, arXiv:1507.08243.
- Patrick M. Knupp, Jacobian-weighted elliptic grid generation, SIAM J. Sci. Comput. 17 (1996), no. 6, 1475–1490. MR 1413711, DOI 10.1137/S1064827594278563
- Patrick M. Knupp and Nicolas Robidoux, A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms, SIAM J. Sci. Comput. 21 (2000), no. 6, 2029–2047. MR 1762029, DOI 10.1137/S1064827598341633
- Patrick Knupp and Stanly Steinberg, Fundamentals of grid generation, CRC Press, Boca Raton, FL, 1994. With 1 IBM-PC floppy disk (3.5 inch; HD). MR 1300634
- M. Křížek and L. Qun, On diagonal dominance of stiffness matrices in $3$D, East-West J. Numer. Math. 3 (1995), no. 1, 59–69. MR 1331484
- Ruo Li, Tao Tang, and Pingwen Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170 (2001), no. 2, 562–588. MR 1844903, DOI 10.1006/jcph.2001.6749
- Vladimir D. Liseikin, Grid generation methods, Scientific Computation, Springer-Verlag, Berlin, 1999. MR 1707310, DOI 10.1007/978-3-662-03949-6
- Changna Lu, Weizhang Huang, and Jianxian Qiu, Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems, Numer. Math. 127 (2014), no. 3, 515–537. MR 3216818, DOI 10.1007/s00211-013-0595-8
- J. D. Pryce, On the convergence of iterated remeshing, IMA J. Numer. Anal. 9 (1989), no. 3, 315–335. MR 1011394, DOI 10.1093/imanum/9.3.315
- Hang Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Software 41 (2015), no. 2, Art. 11, 36. MR 3318083, DOI 10.1145/2629697
- A. M. Stuart and A. R. Humphries, Dynamical systems and numerical analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2, Cambridge University Press, Cambridge, 1996. MR 1402909
- Joe F. Thompson, Z. U. A. Warsi, and C. Wayne Mastin, Numerical grid generation, North-Holland Publishing Co., New York, 1985. Foundations and applications. MR 791004
- A. M. Winslow, Adaptive mesh zoning by the equipotential method, Tech. Report UCID-19062, Lawrence Livemore Laboratory, 1981.
- X. Xu, W. Huang, R. D. Russell, and J. F. Williams, Convergence of de Boor’s algorithm for the generation of equidistributing meshes, IMA J. Numer. Anal. 31 (2011), no. 2, 580–596. MR 2813185, DOI 10.1093/imanum/drp052
Bibliographic Information
- Weizhang Huang
- Affiliation: Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045
- MR Author ID: 326320
- Email: whuang@ku.edu
- Lennard Kamenski
- Affiliation: Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
- ORCID: 0000-0001-5227-6891
- Email: kamenski@wias-berlin.de
- Received by editor(s): December 15, 2015
- Received by editor(s) in revised form: February 3, 2017
- Published electronically: October 2, 2017
- Additional Notes: The first author was supported by the University of Kansas General Research Fund allocation #2301056.
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 1887-1911
- MSC (2010): Primary 65N50, 65K10
- DOI: https://doi.org/10.1090/mcom/3271
- MathSciNet review: 3787395