
MATHEMATICS OF COMPUTATION
Volume 87, Number 312, July 2018, Pages 2047–2056
http://dx.doi.org/10.1090/mcom/3283

Article electronically published on October 17, 2017

GENERATING RANDOM FACTORED IDEALS

IN NUMBER FIELDS

ZACHARY CHARLES

Abstract. We present a randomized polynomial-time algorithm to generate

an ideal and its factorization uniformly at random in a given number field. We
do this by generating a random integer and its factorization according to the
distribution of norms of ideals at most N in the given number field. Using this
randomly generated norm, we can produce a random factored ideal in the ring
of algebraic integers uniformly at random among ideals with norm up to N , in
randomized polynomial time. We also present a variant of this algorithm for
generating random factored ideals in function fields.

1. Introduction

We consider a generalization of the following problem: Given an integer N > 0,
generate an integer in [1, N ] uniformly at random, along with its prime factorization,
in polynomial time. Since there are currently no known polyonmial-time factoriza-
tion algorithms, we cannot simply generate an integer and factor it. Instead, we
can generate the prime factorization uniformly at random.

In his thesis, Bach gave a randomized polynomial time method to uniformly
produce a factored integer in [N2 , N ] [2]. Bach’s method uses only an expected
number of logN primality tests in [1, N ] [3]. Since we can test for primality in
polynomial time by the work of Agrawal, Kayal, and Saxena [1], Bach’s algorithm
runs in randomized polynomial time. In 2003, Kalai gave another method for
doing this using a conceptually simpler but slower method. Kalai’s algorithm uses
an expected number of O(log(N)2) primality tests [7]. In 2016, Lebowitz-Lockard
and Pomerance gave a variant of Kalai’s algorithm to produce random factored
elements on Z[i] with norm at most N [9]. This paper gives a generalization of
these algorithms that will produce random factored ideals in OK for any number
field K. The method given will be polynomial in N and the degree d, where we fix
d and assume N tends to infinity.

We first discuss Kalai’s algorithm and give a brief analysis. We then use these
ideas to generate, in polynomial time, an integer in [1, N ] according to the distri-
bution of norms of ideals in OK . We then discuss how to use this algorithm to
produce random factored ideals of OK with norm up to N uniformly at random

using O((logN)d
2+d+1) primality tests. This algorithm is then modified to gener-

ate random factored ideals in function fields using O((logN)d
2+d+1) primality tests.

While the algorithm described by Agrawal, Kayal, and Saxena runs in O(log15/2 N),
Lenstra and Pomerance later developed a primality testing algorithm with run time
O(log6 N) [10]. Using the latter algorithm, our algorithms for generating random

Received by the editor December 14, 2016, and, in revised form, February 8, 2017.
2010 Mathematics Subject Classification. Primary 11Y16; Secondary 68Q25.

c©2017 American Mathematical Society

2047

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3283


2048 ZACHARY CHARLES

factored ideals in number fields and function fields have expected run times that

are O((logN)d
2+d+7).

2. Kalai’s algorithm

In his 2003 paper [7], Kalai presents the following algorithm.

Algorithm 1. Input: A positive integer N .
Output: A positive integer r ∈ [1, N ] and its prime factorization, produced according
to a uniform distribution.

1. Generate a sequence N ≥ s1 ≥ s2 ≥ · · · ≥ sl = 1, where s1 ∈ {1, . . . , N} and
si+1 ∈ {1, . . . , si} are chosen uniformly at random. Stop when sj = 1.

2. Let r be the product of the prime si’s.
3. If r ≤ N output r with probability r

N .
4. If r > N or we do not accept r ≤ N , return to step 1.

Let p be a prime number. Then there is a first number si produced in the range
{1, 2, . . . , p}. It is chosen uniformly at random, so the probability that si = p is 1

p .

Generating e factors p then occurs with probability 1
pe (1 − 1

p ). The probability of

outputting a given r is then

r

N
Pr

[
r =

∏
p≤n

pvp(r)
]
=

r

N

∏
p≤N

(
1

p

)vp(r)(
1− 1

p

)

=
r

N

1

r

∏
p≤n

(
1− 1

p

)

=
MN

N
.

Here MN =
∏

p≤N (1− 1/p). Therefore, if the algorithm terminates, it produces

r and its prime factorization with probability 1
N . Moreover, the probability that

Kalai’s algorithm terminates after a single round is MN . We therefore expect M−1
N

trials before we output a number.
We now show that the expected number of primality tests is O(log(N)2). Note

that given some si > 1, the expected value of si+1 is si
2 . Therefore, a given list

s1, . . . , sl has expected length O(logN). We need an expected number of O(logN)
primality tests for every round of the algorithm. Hence, we do an expected number
of O(M−1

N logN) primality tests overall. By Mertens’ theorem, M−1
N = O(logN).

Therefore Kalai’s algorithm uses O(log(N)2) primality tests in expectation before
the algorithm terminates.

3. Generating random factored norms

We now give a generalization of Kalai’s algorithm that produces a random norm
of an ideal in OK , along with its prime factorization. Let K be a number field
of degree d, and N an integer satisfying d << log(N). The algorithm will use a
polynomial number of primality tests. In order to do so, we need knowledge of how
the rational primes split. In general, this is computationally efficient for primes not
dividing the discriminant of K [11]. If f(x) is the monic irreducible polynomial over
Q determining K, then we can determine how p splits by factoring f(x) modulo
Z/pZ. Factoring polynomials over finite fields can be accomplished in randomized



GENERATING RANDOM FACTORED IDEALS IN NUMBER FIELDS 2049

polynomial time [8]. The remaining prime numbers can be factored using a method
of Chistov to factor polynomials in Qp in polynomial time [4]. We therefore assume
we can factor rational primes in K.

For any integer r > 0, let D(r) denote the number of ideals in K of norm r.
Let p ∈ Z be a rational prime with factorization pOK =

∏m
j=1 p

ej
j . Let N(pj) =

pfj . Finding D(pe) can now be reduced to determining the number of solutions
to

∑m
i=1 cifi = e. This is an instance of the subset sum problem. We know that

e is O(logN). Therefore, we can solve the subset sum problem in O(m logN)
operations [5]. Since

∑m
i=1 eifi = d, we know that m ≤ d. The runtime for this

becomes O(logN) as a result. Since D(r) is multiplicative, we can calculate D(r)
for any r relatively efficiently (certainly in polynomial time).

We will generate r and keep r with probability proportional to rD(r)
N . In order

to guarantee a well-defined probability, we need to bound D(r) by a factor that can
be incorporated in to the selection of the factors. We use the following result. Let
Ω(r) denote the number of prime factors of r with multiplicity, and let Ωd(r) be
the number of prime factors (counting multiplicity) of r that are greater than d.

Proposition 1. D(r) ≤ dΩ(r).

Proof. Note that D(r) is multiplicative. This is because prime ideals in OK have
norms that are powers of prime numbers [11]. Constructing an ideal of norm r =∏

p p
ep amounts to constructing an ideal of norm pep for each prime p|r.

Say pOK =
∏m

i=1 p
ei
i for p ⊂ OK prime. The norm is multiplicative, and since

N(pOK) = pd, we must have
∑m

i=1 N(pi)
ei = d. Fix e. Note that D(pe) will be

at its largest when the p are all distinct (i.e., ei = 1) and all the pi have norm p.
Then D(pe) will be the number of unordered sets of e elements taken from the d
prime ideals. This is bounded above by the number ordered sets, which is given by
de = dΩ(r). �

We now present the main algorithm. For simplicity of analysis, we demonstrate
the case where d is even and N ≡ d − 1 mod d. Let k ∈ Z be such that N =
kd+(d− 1). These assumptions are not necessary, but help simplify minor details.

Algorithm 2. Input: A positive integer N .
Output: A random integer in [1, N ]. The integer is generated according to the
distribution of norms of ideals in OK with norm up to N .

1. Generate �d
2� lists of integers as follows. For b ∈ {1, 3, 5, . . . , d− 1}, generate

a list N ≥ s1,b ≥ s2,b ≥ · · · ≥ slb,b = 1. We take s1,b ∈ {1, d+ b, 2d+ b, . . . , kd+ b},
where s1,b = 1 with probability 1

kd+1 and is any other element with probability d
kd+1 .

Take si+1,b in {1, d+ b, 2d+ b, . . . , si,b} as 1 with probability 1
si,b−b+1 and any other

element with probability d
si,b−b+1 .

2. Let r be the product of the prime si,b.
3. For all primes p between 1 and d, do the following: Multiply r by p with

probability p−1
p , and continue to multiply by p with this probability until your first

failure.

4. If r ≤ N , keep r with probability Md(r)
ψ(r)D(r)

dΩd(r)N
.

5. If you did not keep r, go to step 1.

If d is odd, then we take b ∈ {1, 3, 5, . . . , d − 2}. This way we ensure that we
are only picking odd numbers. If N is some other value mod d, say N = kd+ j for



2050 ZACHARY CHARLES

j < d − 1, then we can instead do the following. Let N ′ be the smallest number
above N such that N ′ ≡ d−1 mod d. Run steps 1–3 of the algorithm above with N ′

substituted for N . Then run step 4 by rejecting all r > N instead. For simplicity,
we will analyze the algorithm in the case that N ≡ d− 1 mod d.

Let n denote the residue of n mod d. We define ψ(r) as follows. Let ψ(r) have
the same factors as r, except that for any prime p|r, p > d, replace the factor of
p with a factor of p − p + 1. Note that ψ(r) ≤ r and they share the same prime
factors, with multiplicity, for 2 ≤ p < d.

We define Md(r) by:

Md(r) =
∏

2≤p<d

α

(
1

p− 1

)vp(r)

,

α =

(
d+ �logN� − 1

�logN�

)−1

.

4. Analysis of the algorithm

We wish to show that the probability of accepting r is a well-defined probability.
Let g(r) be the product of all prime factors p of r, with multiplicity satisfying p > d.
Note that since D(r) is multiplicative, we have

D(r) = D(g(r))
∏

2≤p≤d

D(pvp(r)).

By the discussion in section 3, D(pvp(r)) ≤
(d+vp(r)−1

vp(r)

)
. This follows from the

fact that D(pvp(r)) is maximized when all the primes ideals lying above p are all
distinct and have norm p. Then D(pe) equals the number of unordered sets of size
e taken from the d prime ideals lying above p.

Using the above we find

Md(r)
ψ(r)D(r)

dΩd(r)N

=
∏

2≤p≤d

[
α

(
1

p− 1

)vp(r)

D(pvp(r))

]
ψ(r)

N

D(g(r))

dΩd(r)

≤
∏

2≤p≤d

[
αD(pvp(r))

]
ψ(r)

N

D(g(r))

dΩd(r)

≤
∏

2≤p≤d

[(
d+ �logN� − 1

�logN�

)−1(
d+ vp(r)− 1

vp(r)

)]
ψ(r)

N

D(g(r))

dΩ(g(r))

≤ 1.

Let p > d be an odd prime with p ≡ p mod d. Then we will produce exactly e
factors of p with probability given by(

d

p− p+ 1

)e(
1− d

p− p+ 1

)
.

Let r be some integer at most N . Recall that ψ(r) is formed from r by replacing
all prime factors p|r, p > d by p − p + 1. In particular, r and ψ(r) have the same

prime divisors for p ≤ d. Let Pr

[
s =

∏
d<p≤N pvp(r)

]
denote the probability that



GENERATING RANDOM FACTORED IDEALS IN NUMBER FIELDS 2051

after step 2 we have generated an integer s that is the product of the prime factors
of r that are larger than d. The probability can be worked out as follows:

Pr

[
s =

∏
d<p≤N

pvp(r)
]
=

∏
d<p≤N

(
d

p− p+ 1

)vp(r)(
1− d

p− p+ 1

)

=
∏

d<p≤N

((
d

p− p+ 1

)vp(r)) ∏
d<p≤N

(
1− d

p− p+ 1

)

= dΩd(r)
∏

d<p≤N

(
1

p− p+ 1

)vp(r) ∏
d<p≤N

(
1− d

p− p+ 1

)

=
dΩd(r)

ψ(r)

∏
2≤p≤d

pvp(r)
∏

d<p≤N

(
1− d

p− p+ 1

)
.

Note that this last step used the fact that by definition of ψ(r), we have

∏
d<p≤N

(
1

p− p+ 1

)vp(r)

=

∏
2≤p≤d p

vp(r)

ψ(r)
.

Given any r ≤ N , the probability that we generate r after step 3 is then given
by

dΩd(r)

ψ(r)

∏
2≤p≤d

[(
p− 1

p

)vp(r)(
1− p− 1

p

)] ∏
2≤p≤d

pvp(r)
∏

d<p≤N

(
1− d

p− p+ 1

)

=
dΩd(r)

ψ(r)

∏
2≤p≤d

(p− 1)vp(r)
1

p

∏
d<p≤N

(
1− d

p− p+ 1

)
.

Finally, the probability that we accept this r is then given by

Md(r)
ψ(r)D(r)

dΩd(r)N

dΩd(r)

ψ(r)

∏
2≤p≤d

(p− 1)vp(r)
1

p

∏
d<p≤N

(
1− d

p− p+ 1

)

=
D(r)

N

∏
2≤p≤d

α

(
1

p− 1

)vp(r)

(p− 1)vp(r)
1

p

∏
d<p≤N

(
1− d

p− p+ 1

)

=
D(r)

N

∏
2≤p≤d

(
α

p

) ∏
d<p≤N

(
1− d

p− p+ 1

)
.

Note that other than D(r), all terms depend only on d and N . Therefore, this
generates a number with probability proportional to D(r).

We now show that the algorithm above runs in polynomial time, with polynomial
many primality tests and factorizations of rational primes. Summing over all r at
most N , the probability that we generate an ideal is∑

r≤N D(r)

N

∏
2≤p<d

(
α

p

) ∏
d<p≤N

(
1− d

p− p+ 1

)
.

Let Zn =
∏

d<p≤N

(
1 − d

p−p+1

)
. By the Wiener-Ikehara Tauberian theorem

(see [6] for reference),
∑

r≤N D(r) asymptotically approaches CKN , where CK is



2052 ZACHARY CHARLES

the residue of the Dedekind zeta function of K at 1. Then, asymptotically, the
expected number of trials is O(α−dZ−1

N

∏
2≤p<d p).

By direct computation, we have

α−1 =

(
d+ �logN� − 1

�logN�

)

= (d− 1 + �logN�)(d− 2 + �logN�) . . . (1 + �logN�)
≤ (2 logN)d−1.

We have d factors of α−1, so this contributes O(log(N)d
2−d) to the expected

number of trials. Note that the term
∏

2≤p<d p contributes a term that is bounded

by a constant dd, and is therefore O(1) in terms of N . We now wish to find the
contribution of the remaining term in the probability calculation above.

Simple estimates show that

ZN ≥
∏

d<p≤2d

(
1− d

d+ 1

) ∏
2d<p≤N

(
1− d

p− d

)

≥ c
∏

2d<p≤N

(
1− 2d

p

)
.

Here c =
∏

d<p≤2d

(
1 − d

d+1

)
= (d + 1)−d. By standard estimates, such as

in [12], we have

∏
2d<p≤N

(
1− 2d

p

)−1

= O(log(N)2d).

Hence we need O(log(N)d
2+d) trials before success. Since any given list has

expected length O(log(N)), this leads to O(log(N)d
2+d+1) primality tests.

We now use the above algorithm to generate random ideals of OK , uniformly
at random among all ideals with norm up to N . As previously stated, we assume
that we for any rational prime p, we can find the factorization pOK =

∏m
i=1 p

ei
i

with N(pi) = pfi . To find an ideal of norm pe, it suffices to solve, as previously
discussed, the following subset sum problem:

m∑
i=1

cifi = e.

Any solution to this corresponds to the ideal
∏m

i=1 p
ci . Since e ≤ logN and

m ≤ d, we can clearly find all solutions in O(logd N) operations [5]. While this is
not optimal, even the naive approach is dwarfed by the effort needed to generate
the norm. After we find all solutions, we can then choose uniformly at random one
of the solutions, which will give us one of the ideals of the desired norm. Therefore,

the algorithm runs in a number of operations that is O(logd
2+d+1 N) primality tests

and factorizations of pOK . The primality testing is the dominant part of this in
terms of runtime. Since we can perform primality tests in O(log6 N), this gives us

a runtime that is O(logd
2+d+7 N) overall.



GENERATING RANDOM FACTORED IDEALS IN NUMBER FIELDS 2053

5. Function fields

The analogy between number fields and function fields suggests that there should
be an analogous algorithm for function fields. In particular, there are well-known
randomized polynomial-time algorithms for factoring over Fq[t]. To generate a
factored random polynomial in Fq[t], we could simply generate one at random and
then factor it in randomized polynomial time. Much more elegant ways exist that
generate the factorization at random, the same idea used by the methods above.

Therefore, we would expect the ability to translate the algorithm above to arbi-
trary function fields. Fix a function field K of degree d and N > 0. We want to
generate a random ideal I ⊂ OK with norm r(t) ∈ Fq[t] of degree at most N , along
with the factorization of I. We will use the fact that we can perform primality
testing over Fq[t] in polynomial time. We will also assume that for any irreducible
polynomial f(t) ∈ Fq[t], we can factor f(t)OK in polynomial time. Since OK is a
Dedekind domain, this holds for all f(t) not dividing the discriminant, so there are
only finitely many f(t) that need to be factored as a one-time operation.

As in number fields, the main obstacle is generating the norm g(t) of I with
probability proportional to the number of ideals with this norm. Once we can do
this, then we can use our ability to factor g(t) over OK and solve the corresponding
subset sum problem to generate an ideal of OK uniformly at random with its
factorization.

Let g ∈ Fq[t]. Then we can consider g to be a number written base q by looking
at its coefficients. Let n(g) denote this number. Let D(g) denote the number of
ideals in OK with norm g. For any number n ∈ Z, using its q-ary expansion, we
can form a corresponding element β(n) ∈ Fq[t].

We present the following algorithm for generating a norm g ∈ Fq[t] with probabi-
ity proportional toD(g). It is virtually identical to the algorithm above, except that
our concept of primality of a number p is replaced by primality of the corresponding
element β(p) ∈ Fq[t].

Algorithm 3. Input: A positive integer N .
Output: A random element in Fq[t] with degree at most N . The polynomial is
generated according to the distribution of norms of ideals in OK with degree of
their norm at most N .

1. Generate �d
2� lists of integers as follows. For b ∈ {1, 3, 5, . . . , d−1}, generate a

list qN+1 > s1,b ≥ s2,b ≥ · · · ≥ slb,b = 1. We take s1,b ∈ {1, d+b, 2d+b, . . . , kd+b},
where s1,b = 1 with probability 1

kd+1 and is any other element with probability d
kd+1 .

Take si+1,b in {1, d+ b, 2d+ b, . . . , si,b} as 1 with probability 1
si,b−b+1 and any other

element with probability d
si,b−b+1 .

2. Let r be the product of the si,b such that β(si,b) is prime.
3. For all integers p between 1 and d such that β(p) is prime, do the follow-

ing: Multiply r by p with probability p−1
p , and continue to multiply by p with this

probability until your first failure.

4. If r < qN+1, return β(r) with probability Md(r)
ψ(r)D(β(r))

dΩd(α(r))qN
.

5. If you did not return β(r), go to step 1.

Let n denote the residue of n mod d. We define ψ(r) as follows. Factor β(r)
in to primes gi. For each gi such that n(gi) > d, replace the factor of n(gi) with



2054 ZACHARY CHARLES

n(gi) − n(gi) + 1. Note that ψ(r) ≤ r and β(r), β(ψ(r)) share the same factors gi
such that 2 ≤ n(gi) ≤ d.

We define Md(r) by

Md(r) =
∏

f∈Fq [t], f is prime
2≤n(f)<d

α

(
1

n(f)− 1

)vn(f)(r)

,

α =

(
d+N�log q� − 1

N�log q�

)−1

.

An almost identical argument to the one above shows that this produces r with
probability proportional to D(β(r)). Moreover, the algorithm produces a norm
with probability∑

g∈Fq [t],deg(g)≤N D(g)

qN

∏
g∈Fq [t]

2≤n(g)≤d

α

n(g)

∏
g∈Fq [t]

d<n(g)<qN+1

(
1− d

n(g)− n(g) + 1

)
.

We first want to analyze
∑

g∈Fq,deg(g)≤N D(g). Let D+
K denote the set of effective

divisors of V , where K is the function field of the projective variety V . Note that
the zeta function for K can be written as

ζK(s) =
∑

D∈D+
K

1

qdeg(D)s
.

If we let an denote the number of g ∈ Fq[t] of degree n, then this becomes

ζK(s) =
∑
n≥0

an
qns

.

Since ζK(s) converges absolutely for Re(s) > 1 and has a simple pole at s = 1,
the analogue of the Wiener-Ikehara Tauberian theorem for function fields implies
that ∑

n≤N

an = Θ(qN ).

Let ZN be given by

ZN =
∏

d<n(g)<qN+1

g prime

(
1− d

n(g)− n(g) + 1

)
.

Note that the expected number of trials of the algorithm is

O(α−dZ−1
N

∏
2≤n(g)≤d
g prime

n(g)).

By an analogous argument to the above, we have at most d factors of α which
contribute at most (2N log(q))d−1 to the expected number of trials, while the last
product in the estimate contributes an amount bounded by dd. Therefore, it suffices
to bound Z−1

N . Using a version of the prime number theorem for Fq[x], one can

prove in an analogous way to the proof above that Z−1
N contributes O((N log(q))2d)

iterations in expected value.



GENERATING RANDOM FACTORED IDEALS IN NUMBER FIELDS 2055

Therefore, we require O((N log q)d
2+d) trials before success in expectation. Each

of the d
2 lists has expected length O(N log q), so we require O((N log q)d

2+d+1)
primality tests. Note that this gives us a randomized algorithm that is polynomial
in the logarithm of the size of the input (as there are qN possible norms of the ideal
to generate). Since primality testing can be performed in time that is O((N log q)6),

this gives us an overall runtime that is O((N log q)d
2+d+7).

6. Further work

The algorithm above uses similar ideas to Kalai’s algorithm. Bach’s algorithm
for generating factored integers runs in fewer primality tests, and so one could ask
whether the ideas of Bach could be adapted to this setting in order to reduce the
number of primality tests required. In general, one could determine ways to make
the above algorithm run faster, in particular by reducing the number of primality
tests required.

The algorithms above work for a fixed number or function field. In particular,
their runtime is polynomial treating the degree of the field extension as constant.
It remains an open question whether there is an algorithm for generating random
factored ideals that runs in polynomial time, irrespective of the degree of the field.
The methods above would have to be altered significantly to do so, due to their
exponential dependence on the degree d.

There are other generalizations of this problem that could be considered. Due
to the natural way in which principal ideals arise in number fields, one could ask
for a variant of this algorithm that generates principal ideals uniformly at random.
Clearly we could use the above algorithm to generate an ideal uniformly at ran-
dom, and then only accept it if it is principal. Since this occurs with probability
1/h, where h is the class number, this would result in a polynomial-time algorithm
provided we had a polynomial-time way to recognize principal ideals. Unfortu-
nately, this is a difficult question in arbitrary number fields, as there are no known
polynomial-time algorithms to detect whether an ideal in an arbitrary number field
is principal.

References

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), no. 2,
781–793, DOI 10.4007/annals.2004.160.781. MR2123939

[2] E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms,

ACM Distinguished Dissertations, MIT Press, Cambridge, MA, 1985. MR807772
[3] E. Bach, How to generate factored random numbers, SIAM J. Comput. 17 (1988), no. 2,

179–193, DOI 10.1137/0217012. Special issue on cryptography. MR935336
[4] A. L. Chistov, Efficient factoring polynomials over local fields and its applications, Proceed-

ings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc.
Japan, Tokyo, 1991, pp. 1509–1519. MR1159333

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd
ed., MIT Press, Cambridge, MA; McGraw-Hill Book Co., Boston, MA, 2001. MR1848805

[6] S. Ikehara, An extension of landau’s theorem in the analytical theory of numbers, Journal of
Mathematics and Physics 10 (1931), no. 1-4, 1–12.

[7] A. Kalai, Generating random factored numbers, easily, J. Cryptology 16 (2003), no. 4, 287–
289, DOI 10.1007/s00145-003-0051-5. MR2002046

[8] D. E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 3rd edi-
tion, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1997. Original
edition review: MR0286318

http://www.ams.org/mathscinet-getitem?mr=2123939
http://www.ams.org/mathscinet-getitem?mr=807772
http://www.ams.org/mathscinet-getitem?mr=935336
http://www.ams.org/mathscinet-getitem?mr=1159333
http://www.ams.org/mathscinet-getitem?mr=1848805
http://www.ams.org/mathscinet-getitem?mr=2002046
http://www.ams.org/mathscinet-getitem?mr=0286318


2056 ZACHARY CHARLES

[9] N. Lebowitz-Lockard and C. Pomerance, Generating random factored Gaussian integers,
easily, Math. Comp. 85 (2016), no. 297, 503–516, DOI 10.1090/mcom/3000. MR3404459

[10] H. W. Lenstra, Jr., Primality testing with gaussian periods, Proceedings of the 22nd Con-
ference Kanpur on Foundations of Software Technology and Theoretical Computer Science
(London, UK), FST TCS ’02, Springer-Verlag, 2002.

[11] J. S. Milne, Algebraic number theory, 2013, Available at www.jmilne.org/math/, p. 161.
[12] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers,

Illinois J. Math. 6 (1962), 64–94. MR0137689

Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin

53706

E-mail address: zcharles@math.wisc.edu

http://www.ams.org/mathscinet-getitem?mr=3404459
http://www.ams.org/mathscinet-getitem?mr=0137689

	1. Introduction
	2. Kalai’s algorithm
	3. Generating random factored norms
	4. Analysis of the algorithm
	5. Function fields
	6. Further work
	References

