An anisotropic finite element method on polyhedral domains: Interpolation error analysis
HTML articles powered by AMS MathViewer
- by Hengguang Li;
- Math. Comp. 87 (2018), 1567-1600
- DOI: https://doi.org/10.1090/mcom/3290
- Published electronically: October 31, 2017
- PDF | Request permission
Abstract:
On a polyhedral domain $\Omega \subset \mathbb R^3$, consider the Poisson equation with the Dirichlet boundary condition. For singular solutions from the non-smoothness of the domain boundary, we propose new anisotropic mesh refinement algorithms to improve the convergence of finite element approximation. The proposed algorithm is simple, explicit, and requires less geometric conditions on the mesh and on the domain. Then, we develop interpolation error estimates in suitable weighted spaces for the anisotropic mesh, especially for the tetrahedra violating the maximum angle condition. These estimates can be used to design optimal finite element methods approximating singular solutions. We report numerical test results to validate the method.References
- Thomas Apel, Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. MR 1716824
- Th. Apel and B. Heinrich, Mesh refinement and windowing near edges for some elliptic problem, SIAM J. Numer. Anal. 31 (1994), no. 3, 695–708. MR 1275108, DOI 10.1137/0731037
- Thomas Apel and Serge Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges, Math. Methods Appl. Sci. 21 (1998), no. 6, 519–549. MR 1615426, DOI 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.3.CO;2-I
- Thomas Apel, Serge Nicaise, and Joachim Schöberl, Finite element methods with anisotropic meshes near edges, Finite element methods (Jyväskylä, 2000) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakk\B{o}tosho, Tokyo, 2001, pp. 1–8. MR 1896262
- Thomas Apel, Anna-Margarete Sändig, and John R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63–85. MR 1365264, DOI 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-S
- Thomas Apel and Joachim Schöberl, Multigrid methods for anisotropic edge refinement, SIAM J. Numer. Anal. 40 (2002), no. 5, 1993–2006. MR 1950630, DOI 10.1137/S0036142900375414
- I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214–226. MR 455462, DOI 10.1137/0713021
- I. Babuška, R. B. Kellogg, and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33 (1979), no. 4, 447–471. MR 553353, DOI 10.1007/BF01399326
- C. Bacuta, H. Li, and V. Nistor, Anisotropic graded meshes and quasi-optimal rates of convergence for the FEM on polyhedral domains in 3D. In CCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, pages 9003–9014. 2012.
- Constantin Bacuta, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates, Numer. Funct. Anal. Optim. 26 (2005), no. 6, 613–639. MR 2187917, DOI 10.1080/01630560500377295
- Constantin Bacuta, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. II. Mesh refinements and interpolation, Numer. Funct. Anal. Optim. 28 (2007), no. 7-8, 775–824. MR 2347683, DOI 10.1080/01630560701493263
- Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps, Numer. Math. 100 (2005), no. 2, 165–184. MR 2135780, DOI 10.1007/s00211-005-0588-3
- J. Bey, Tetrahedral grid refinement, Computing 55 (1995), no. 4, 355–378 (English, with English and German summaries). MR 1370107, DOI 10.1007/BF02238487
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376, DOI 10.1007/978-1-4757-3658-8
- S. C. Brenner, J. Cui, and L.-Y. Sung, Multigrid methods for the symmetric interior penalty method on graded meshes, Numer. Linear Algebra Appl. 16 (2009), no. 6, 481–501. MR 2522959, DOI 10.1002/nla.630
- Annalisa Buffa, Martin Costabel, and Monique Dauge, Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron, C. R. Math. Acad. Sci. Paris 336 (2003), no. 7, 565–570 (English, with English and French summaries). MR 1981469, DOI 10.1016/S1631-073X(03)00138-9
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Martin Costabel and Monique Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements, Numer. Math. 93 (2002), no. 2, 239–277. MR 1941397, DOI 10.1007/s002110100388
- Martin Costabel, Monique Dauge, and Serge Nicaise, Weighted analytic regularity in polyhedra, Comput. Math. Appl. 67 (2014), no. 4, 807–817. MR 3163880, DOI 10.1016/j.camwa.2013.03.006
- Martin Costabel, Monique Dauge, and Christoph Schwab, Exponential convergence of $hp$-FEM for Maxwell equations with weighted regularization in polygonal domains, Math. Models Methods Appl. Sci. 15 (2005), no. 4, 575–622. MR 2137526, DOI 10.1142/S0218202505000480
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- Colette De Coster and Serge Nicaise, Singular behavior of the solution of the Helmholtz equation in weighted $L^p$-Sobolev spaces, Adv. Differential Equations 16 (2011), no. 1-2, 165–198. MR 2766898
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Mohamed Farhloul, Serge Nicaise, and Luc Paquet, Some mixed finite element methods on anisotropic meshes, M2AN Math. Model. Numer. Anal. 35 (2001), no. 5, 907–920. MR 1866274, DOI 10.1051/m2an:2001142
- R. Fritzsch. Optimale Finite-Elemente-Approximationen für Funktionen mit Singularitäten. 1990. Thesis (Ph.D.)–TU Dresden.
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Benqi Guo and Christoph Schwab, Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces, J. Comput. Appl. Math. 190 (2006), no. 1-2, 487–519. MR 2209521, DOI 10.1016/j.cam.2005.02.018
- Eugenie Hunsicker, Hengguang Li, Victor Nistor, and Ville Uski, Analysis of Schrödinger operators with inverse square potentials I: regularity results in 3D, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103) (2012), no. 2, 157–178. MR 3075332
- V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 226187
- V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical Surveys and Monographs, vol. 85, American Mathematical Society, Providence, RI, 2001. MR 1788991, DOI 10.1090/surv/085
- Hengguang Li, Anna Mazzucato, and Victor Nistor, Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains, Electron. Trans. Numer. Anal. 37 (2010), 41–69. MR 2777235
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Jean M.-S. Lubuma and Serge Nicaise, Dirichlet problems in polyhedral domains. II. Approximation by FEM and BEM, J. Comput. Appl. Math. 61 (1995), no. 1, 13–27. MR 1358044, DOI 10.1016/0377-0427(94)00050-B
- Vladimir Maz’ya and Jürgen Rossmann, Elliptic equations in polyhedral domains, Mathematical Surveys and Monographs, vol. 162, American Mathematical Society, Providence, RI, 2010. MR 2641539, DOI 10.1090/surv/162
- Serge Nicaise, Polygonal interface problems, Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], vol. 39, Verlag Peter D. Lang, Frankfurt am Main, 1993. MR 1236228
- L. A. Oganesjan, V. Ja. Rivkind, and L. A. Ruhovec, Variational-difference methods for the solution of elliptic equations. I, Differencial′nye Uravnenija i Primenen.—Trudy Sem. Processy 5 (1973), 3–389, 391 (Russian, with English and Lithuanian summaries). MR 478669
- Geneviève Raugel, Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 18, A791–A794 (French, with English summary). MR 497667
- Dominik Schötzau, Christoph Schwab, and Thomas P. Wihler, $hp$-dGFEM for second-order mixed elliptic problems in polyhedra, Math. Comp. 85 (2016), no. 299, 1051–1083. MR 3454358, DOI 10.1090/mcom/3062
- Lars B. Wahlbin, On the sharpness of certain local estimates for $\r H{}^{1}$ projections into finite element spaces: influence of a re-entrant corner, Math. Comp. 42 (1984), no. 165, 1–8. MR 725981, DOI 10.1090/S0025-5718-1984-0725981-7
Bibliographic Information
- Hengguang Li
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- MR Author ID: 835341
- Email: li@wayne.edu
- Received by editor(s): July 12, 2016
- Received by editor(s) in revised form: March 1, 2017
- Published electronically: October 31, 2017
- Additional Notes: The author was supported in part by the NSF Grant DMS-1418853, by the Natural Science Foundation of China Grant 11628104, and by the Wayne State University Grants Plus Program
- © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 1567-1600
- MSC (2010): Primary 65N15, 65N30, 65N50; Secondary 35J15, 35J75
- DOI: https://doi.org/10.1090/mcom/3290
- MathSciNet review: 3787385