Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime
HTML articles powered by AMS MathViewer
- by Weizhu Bao and Chunmei Su;
- Math. Comp. 87 (2018), 2133-2158
- DOI: https://doi.org/10.1090/mcom/3278
- Published electronically: November 22, 2017
- PDF | Request permission
Abstract:
We establish uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov (KGZ) system with a dimensionless parameter $\varepsilon \in (0,1]$, which is inversely proportional to the acoustic speed. In the subsonic limit regime, i.e., $0<\varepsilon \ll 1$, the solution propagates highly oscillatory waves in time and/or rapid outgoing initial layers in space due to the singular perturbation in the Zakharov equation and/or the incompatibility of the initial data. Specifically, the solution propagates waves with $O(\varepsilon )$-wavelength in time and $O(1)$-wavelength in space as well as outgoing initial layers in space at speed $O(1/\varepsilon )$. This high oscillation in time and rapid outgoing waves in space of the solution cause significant burdens in designing numerical methods and establishing error estimates for KGZ system. By applying an asymptotic consistent formulation, we propose a uniformly accurate finite difference method and rigorously establish two independent error bounds at $O(h^2+\tau ^2/\varepsilon )$ and $O(h^2+\tau +\varepsilon )$ with $h$ mesh size and $\tau$ time step. Thus we obtain a uniform error bound at $O(h^2+\tau )$ for $0<\varepsilon \le 1$. The main techniques in the analysis include the energy method, cut-off of the nonlinearity to bound the numerical solution, the integral approximation of the oscillatory term, and $\varepsilon$-dependent error bounds between the solutions of KGZ system and its limiting model when $\varepsilon \to 0^+$. Finally, numerical results are reported to confirm our error bounds.References
- Hélène Added and Stéphane Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. Funct. Anal. 79 (1988), no. 1, 183–210. MR 950090, DOI 10.1016/0022-1236(88)90036-5
- Georgios D. Akrivis, Vassilios A. Dougalis, and Ohannes A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), no. 1, 31–53. MR 1103752, DOI 10.1007/BF01385769
- Weizhu Bao and Yongyong Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50 (2012), no. 2, 492–521. MR 2914273, DOI 10.1137/110830800
- Weizhu Bao and Yongyong Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp. 82 (2013), no. 281, 99–128. MR 2983017, DOI 10.1090/S0025-5718-2012-02617-2
- Weizhu Bao, Yongyong Cai, and Xiaofei Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 52 (2014), no. 5, 2488–2511. MR 3268616, DOI 10.1137/130950665
- Weizhu Bao and Xuanchun Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math. 120 (2012), no. 2, 189–229. MR 2874965, DOI 10.1007/s00211-011-0411-2
- Weizhu Bao, Xuanchun Dong, and Xiaofei Zhao, An exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov system, SIAM J. Sci. Comput. 35 (2013), no. 6, A2903–A2927. MR 3138112, DOI 10.1137/110855004
- Weizhu Bao and Chunmei Su, Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation, Multiscale Model. Simul. 15 (2017), no. 2, 977–1002. MR 3662020, DOI 10.1137/16M1078112
- Weizhu Bao and Fangfang Sun, Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM J. Sci. Comput. 26 (2005), no. 3, 1057–1088. MR 2126126, DOI 10.1137/030600941
- Weizhu Bao and Xiaofei Zhao, A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime, J. Comput. Phys. 327 (2016), 270–293. MR 3564339, DOI 10.1016/j.jcp.2016.09.046
- Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185–200. MR 1294924, DOI 10.1006/jcph.1994.1159
- Luc Bergé, Brigitte Bidégaray, and Thierry Colin, A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence, Phys. D 95 (1996), no. 3-4, 351–379. MR 1406290, DOI 10.1016/0167-2789(96)00058-9
- Y. Cai and Y. Yuan, Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime, Math. Comp., (2017). DOI:10.1090/mcom/3269.
- Markus Daub, Guido Schneider, and Katharina Schratz, From the Klein-Gordon-Zakharov system to the Klein-Gordon equation, Math. Methods Appl. Sci. 39 (2016), no. 18, 5371–5380. MR 3582567, DOI 10.1002/mma.3922
- Pierre Degond, Jian-Guo Liu, and Marie-Hélène Vignal, Analysis of an asymptotic preserving scheme for the Euler-Poisson system in the quasineutral limit, SIAM J. Numer. Anal. 46 (2008), no. 3, 1298–1322. MR 2390995, DOI 10.1137/070690584
- R. O. Dendy, Plasma Dynamics, Oxford University Press, Oxford, 1990.
- Bjorn Engquist and Andrew Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977), no. 139, 629–651. MR 436612, DOI 10.1090/S0025-5718-1977-0436612-4
- Kang Feng, Asymptotic radiation conditions for reduced wave equation, J. Comput. Math. 2 (1984), no. 2, 130–138. MR 901405
- Dan Givoli, Numerical methods for problems in infinite domains, Studies in Applied Mechanics, vol. 33, Elsevier Scientific Publishing Co., Amsterdam, 1992. MR 1199563
- R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp. 58 (1992), no. 197, 83–102. MR 1106968, DOI 10.1090/S0025-5718-1992-1106968-6
- Shi Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. 21 (1999), no. 2, 441–454. MR 1718639, DOI 10.1137/S1064827598334599
- Shi Jin, Peter A. Markowich, and Chunxiong Zheng, Numerical simulation of a generalized Zakharov system, J. Comput. Phys. 201 (2004), no. 1, 376–395. MR 2098862, DOI 10.1016/j.jcp.2004.06.001
- R. Landes, On Galerkin’s method in the existence theory of quasilinear elliptic equations, J. Functional Analysis 39 (1980), no. 2, 123–148. MR 597807, DOI 10.1016/0022-1236(80)90009-9
- Nader Masmoudi and Kenji Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, 975–1008. MR 2195989, DOI 10.1142/S0219891605000683
- Nader Masmoudi and Kenji Nakanishi, Energy convergence for singular limits of Zakharov type systems, Invent. Math. 172 (2008), no. 3, 535–583. MR 2393080, DOI 10.1007/s00222-008-0110-5
- Nader Masmoudi and Kenji Nakanishi, From the Klein-Gordon-Zakharov system to a singular nonlinear Schrödinger system, Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), no. 4, 1073–1096 (English, with English and French summaries). MR 2659158, DOI 10.1016/j.anihpc.2010.02.002
- Masahito Ohta and Grozdena Todorova, Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system, SIAM J. Math. Anal. 38 (2007), no. 6, 1912–1931. MR 2299435, DOI 10.1137/050643015
- Tohru Ozawa and Yoshio Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 4, 113–116. MR 1114950
- T. Ozawa, K. Tsutaya, and Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 12 (1995), no. 4, 459–503 (English, with English and French summaries). MR 1341412, DOI 10.1016/S0294-1449(16)30156-1
- Tohru Ozawa, Kimitoshi Tsutaya, and Yoshio Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann. 313 (1999), no. 1, 127–140. MR 1666813, DOI 10.1007/s002080050254
- Steven H. Schochet and Michael I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Phys. 106 (1986), no. 4, 569–580. MR 860310
- C. Su, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer Anal., (2017). DOI 10.1093/imanum/drx044.
- Catherine Sulem and Pierre-Louis Sulem, Quelques résultats de régularité pour les équations de la turbulence de Langmuir, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 3, A173–A176 (French, with English summary). MR 552204
- Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Self-focusing and wave collapse. MR 1696311
- Benjamin Texier, WKB asymptotics for the Euler-Maxwell equations, Asymptot. Anal. 42 (2005), no. 3-4, 211–250. MR 2138794
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170, DOI 10.1007/978-3-662-03359-3
- Kimitoshi Tsutaya, Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations, Nonlinear Anal. 27 (1996), no. 12, 1373–1380. MR 1408877, DOI 10.1016/0362-546X(95)00127-H
- Tingchun Wang, Juan Chen, and Luming Zhang, Conservative difference methods for the Klein-Gordon-Zakharov equations, J. Comput. Appl. Math. 205 (2007), no. 1, 430–452. MR 2324850, DOI 10.1016/j.cam.2006.05.008
- V. E. Zakharov (ed.), Wave collapses, Elsevier Science B.V., Amsterdam, 1991. Phys. D 52 (1991), no. 1. MR 1131135
- Yu Lin Zhou, Applications of discrete functional analysis to the finite difference method, International Academic Publishers, Beijing, 1991. MR 1133399
Bibliographic Information
- Weizhu Bao
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- MR Author ID: 354327
- Email: matbaowz@nus.edu.sg
- Chunmei Su
- Affiliation: Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
- Address at time of publication: Department of Mathematics, National University of Singapore, Singapore 119076
- MR Author ID: 955028
- Email: sucm@csrc.ac.cn
- Received by editor(s): December 30, 2016
- Received by editor(s) in revised form: March 18, 2017
- Published electronically: November 22, 2017
- Additional Notes: The first author was supported by Singapore Ministry of Education Academic Research Fund Tier 2 R-146-000-223-112.
The second author is the corresponding author. The second author was supported by Natural Science Foundation of China Grant U1530401 and the Postdoctoral Science Foundation of China Grant 2016M600904. - © Copyright 2017 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2133-2158
- MSC (2010): Primary 35Q55, 65M06, 65M12, 65M15
- DOI: https://doi.org/10.1090/mcom/3278
- MathSciNet review: 3802430