On the essential minimum of Faltings’ height
HTML articles powered by AMS MathViewer
- by José Ignacio Burgos Gil, Ricardo Menares and Juan Rivera-Letelier;
- Math. Comp. 87 (2018), 2425-2459
- DOI: https://doi.org/10.1090/mcom/3286
- Published electronically: January 18, 2018
- PDF | Request permission
Abstract:
We study the essential minimum of the (stable) Faltings’ height on the moduli space of elliptic curves. We prove that, in contrast to the Weil height on a projective space and the Néron-Tate height of an abelian variety, Faltings’ height takes at least two values that are smaller than its essential minimum. We also provide upper and lower bounds for this quantity that allow us to compute it up to five decimal places. In addition, we give numerical evidence that there are at least four isolated values before the essential minimum.
One of the main ingredients in our analysis is a good approximation of the hyperbolic Green function associated to the cusp of the modular curve of level one. To establish this approximation, we make an intensive use of distortion theorems for univalent functions.
Our results have been motivated and guided by numerical experiments that are described in detail in the companion files.
References
- Jean-Benoît Bost and Gerard Freixas i Montplet, Semi-abelian schemes and heights of cycles in moduli spaces of abelian varieties, Rend. Semin. Mat. Univ. Padova 128 (2012), 55–89 (2013). MR 3076831, DOI 10.4171/RSMUP/128-4
- José Ignacio Burgos Gil, Ricardo Menares, Juan Rivera-Letelier. arXiv:1609.00071, ancillary files.
- José Ignacio Burgos Gil, Patrice Philippon, Juan Rivera-Letelier, and Martín Sombra. The distribution of Galois orbits of points of small height in toric varieties. arXiv:1509.01011v1, 2015.
- José Ignacio Burgos Gil, Patrice Philippon, and Martín Sombra, Successive minima of toric height functions, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2145–2197 (English, with English and French summaries). MR 3449209, DOI 10.5802/aif.2985
- Pierre Deligne, Preuve des conjectures de Tate et de Shafarevitch (d’après G. Faltings), Astérisque 121-122 (1985), 25–41 (French). Seminar Bourbaki, Vol. 1983/84. MR 768952
- Christophe Doche, On the spectrum of the Zhang-Zagier height, Math. Comp. 70 (2001), no. 233, 419–430. MR 1681120, DOI 10.1090/S0025-5718-00-01183-2
- Christophe Doche, Zhang-Zagier heights of perturbed polynomials, J. Théor. Nombres Bordeaux 13 (2001), no. 1, 103–110 (English, with English and French summaries). 21st Journées Arithmétiques (Rome, 2001). MR 1838073
- M. Fekete and G. Szegö, On algebraic equations with integral coefficients whose roots belong to a given point set, Math. Z. 63 (1955), 158–172. MR 72941, DOI 10.1007/BF01187931
- Ulf Kühn, Generalized arithmetic intersection numbers, J. Reine Angew. Math. 534 (2001), 209–236. MR 1831639, DOI 10.1515/crll.2001.043
- Serge Lang, Introduction to modular forms, Grundlehren der Mathematischen Wissenschaften, No. 222, Springer-Verlag, Berlin-New York, 1976. MR 429740
- Steffen Löbrich, A gap in the spectrum of the Faltings height. arXiv:1505.00602v3, 2015.
- David Masser, Elliptic functions and transcendence, Lecture Notes in Mathematics, Vol. 437, Springer-Verlag, Berlin-New York, 1975. MR 379391
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher [Studia Mathematica/Mathematical Textbooks], Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 507768
- Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 253–265. MR 861979
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- C. J. Smyth, On the measure of totally real algebraic integers. II, Math. Comp. 37 (1981), no. 155, 205–208. MR 616373, DOI 10.1090/S0025-5718-1981-0616373-7
- Gisbert Wüstholz, A note on the conjectures of André-Oort and Pink with an appendix by Lars Kühne, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), no. 4, 735–779. With an appendix by Lars Kühne. MR 3309950
- D. Zagier, Algebraic numbers close to both $0$ and $1$, Math. Comp. 61 (1993), no. 203, 485–491. MR 1197513, DOI 10.1090/S0025-5718-1993-1197513-9
- Shouwu Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), no. 1, 187–221. MR 1254133, DOI 10.1090/S0894-0347-1995-1254133-7
Bibliographic Information
- José Ignacio Burgos Gil
- Affiliation: Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UCM3), Calle Nicolás Cabrera 15, Campus UAB, Cantoblanco, 28049 Madrid, Spain
- MR Author ID: 349969
- Email: burgos@icmat.es
- Ricardo Menares
- Affiliation: Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile
- Address at time of publication: Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile
- MR Author ID: 880333
- Email: ricardo.menares@pucv.cl
- Juan Rivera-Letelier
- Affiliation: Department of Mathematics, University of Rochester, Hylan Building, Rochester, New York 14627
- MR Author ID: 670564
- Email: riveraletelier@gmail.com
- Received by editor(s): December 20, 2016
- Received by editor(s) in revised form: April 6, 2017
- Published electronically: January 18, 2018
- Additional Notes: The first author was partially supported by the MINECO research projects MTM2013-42135-P, MTM2016-79400P, and ICMAT Severo Ochoa SEV-2015-0554
The second author was partially supported by FONDECYT grant 1171329
The third author was partially supported by FONDECYT grant 1141091 and NSF grant DMS-1700291 - © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2425-2459
- MSC (2010): Primary 11F11, 11G50, 14G40, 37P30
- DOI: https://doi.org/10.1090/mcom/3286
- MathSciNet review: 3802441