Semi-infinite quasi-Toeplitz matrices with applications to QBD stochastic processes
HTML articles powered by AMS MathViewer
- by Dario A. Bini, Stefano Massei and Beatrice Meini;
- Math. Comp. 87 (2018), 2811-2830
- DOI: https://doi.org/10.1090/mcom/3301
- Published electronically: January 24, 2018
- PDF | Request permission
Abstract:
Denote by $\mathcal {W}_1$ the set of complex valued functions of the form $a(z)=\sum _{i=-\infty }^{+\infty }a_iz^i$ such that $\sum _{i=-\infty }^{+\infty }|ia_i|<\infty$. We call QT-matrix a quasi-Toeplitz matrix $A$, associated with a symbol $a(z)\in \mathcal W_1$, of the form $A=T(a)+E$, where $T(a)=(t_{i,j})_{i,j\in \mathbb {Z}^+}$ is the semi-infinite Toeplitz matrix such that $t_{i,j}=a_{j-i}$, for $i,j\in \mathbb Z^+$, and $E=(e_{i,j})_{i,j\in \mathbb {Z}^+}$ is a semi-infinite matrix such that $\sum _{i,j=1}^{+\infty }|e_{i,j}|$ is finite. We prove that the class of QT-matrices is a Banach algebra with a suitable sub-multiplicative matrix norm. We introduce a finite representation of QT-matrices together with algorithms which implement elementary matrix operations. An application to solving quadratic matrix equations of the kind $AX^2+BX+C=0$, encountered in the solution of Quasi-Birth and Death (QBD) stochastic processes with a denumerable set of phases, is presented where $A,B,C$ are QT-matrices.References
- B. Beckermann and A. Townsend, On the singular values of matrices with displacement, Technical report, arXiv:1609.09494, 2016.
- Michele Benzi and Paola Boito, Decay properties for functions of matrices over $C^*$-algebras, Linear Algebra Appl. 456 (2014), 174–198. MR 3223897, DOI 10.1016/j.laa.2013.11.027
- Michele Benzi and Valeria Simoncini, Decay bounds for functions of Hermitian matrices with banded or Kronecker structure, SIAM J. Matrix Anal. Appl. 36 (2015), no. 3, 1263–1282. MR 3391978, DOI 10.1137/151006159
- Daniele Bertaccini and Fabio Di Benedetto, Spectral analysis of nonsymmetric quasi-Toeplitz matrices with applications to preconditioned multistep formulas, SIAM J. Numer. Anal. 45 (2007), no. 6, 2345–2367. MR 2361893, DOI 10.1137/060650349
- D. A. Bini, G. Fiorentino, L. Gemignani, and B. Meini, Effective fast algorithms for polynomial spectral factorization, Numer. Algorithms 34 (2003), no. 2-4, 217–227. International Conference on Numerical Algorithms, Vol. II (Marrakesh, 2001). MR 2043897, DOI 10.1023/B:NUMA.0000005364.00003.ea
- D. A. Bini, L. Gemignani, and B. Meini, Computations with infinite Toeplitz matrices and polynomials, Linear Algebra Appl. 343/344 (2002), 21–61. Special issue on structured and infinite systems of linear equations. MR 1878936, DOI 10.1016/S0024-3795(01)00341-X
- D. A. Bini, G. Latouche, and B. Meini, Numerical methods for structured Markov chains, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. Oxford Science Publications. MR 2132031, DOI 10.1093/acprof:oso/9780198527688.001.0001
- D. A. Bini, S. Massei, and B. Meĭni, On functions of quasi-Toeplitz matrices, Mat. Sb. 208 (2017), no. 11, 56–74 (Russian, with Russian summary); English transl., Sb. Math. 208 (2017), no. 11, 1628–1645. MR 3717197, DOI 10.4213/sm8864
- Dario A. Bini and Beatrice Meini, The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. In memoriam of Gene H. Golub, Numer. Algorithms 51 (2009), no. 1, 23–60. MR 2505832, DOI 10.1007/s11075-008-9253-0
- D. A. Bini and B. Meini, On the exponential of semi-infinite quasi Toeplitz matrices, arXiv:1611.06380v2, 2016.
- Albrecht Böttcher and Sergei M. Grudsky, Toeplitz matrices, asymptotic linear algebra, and functional analysis, Birkhäuser Verlag, Basel, 2000. MR 1772773, DOI 10.1007/978-3-0348-8395-5
- Albrecht Böttcher and Sergei M. Grudsky, Spectral properties of banded Toeplitz matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. MR 2179973, DOI 10.1137/1.9780898717853
- Albrecht Böttcher and Bernd Silbermann, Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999. MR 1724795, DOI 10.1007/978-1-4612-1426-7
- David R. Brillinger, The analyticity of the roots of a polynomial as functions of the coefficients, Math. Mag. 39 (1966), 145–147. MR 204616, DOI 10.2307/2689304
- B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s equations, SIAM J. Numer. Anal. 7 (1970), 627–656. MR 287717, DOI 10.1137/0707049
- Guy Fayolle, Roudolf Iasnogorodski, and Vadim Malyshev, Random walks in the quarter-plane, Applications of Mathematics (New York), vol. 40, Springer-Verlag, Berlin, 1999. Algebraic methods, boundary value problems and applications. MR 1691900, DOI 10.1007/978-3-642-60001-2
- I. C. Gohberg, On an application of the theory of normed rings to singular integral equations, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 2(48), 149–156 (Russian). MR 48689
- R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc. Comput. Mach. 12 (1965), 95–113. MR 213048, DOI 10.1145/321250.321259
- James R. Jackson, Networks of waiting lines, Operations Res. 5 (1957), 518–521. MR 93061, DOI 10.1287/opre.5.4.518
- Masahiro Kobayashi and Masakiyo Miyazawa, Revisiting the tail asymptotics of the double QBD process: refinement and complete solutions for the coordinate and diagonal directions, Matrix-analytic methods in stochastic models, Springer Proc. Math. Stat., vol. 27, Springer, New York, 2013, pp. 145–185. MR 3067681, DOI 10.1007/978-1-4614-4909-6_{8}
- Daniel Kressner and Robert Luce, Fast computation of the matrix exponential for a Toeplitz matrix, SIAM J. Matrix Anal. Appl. 39 (2018), no. 1, 23–47. MR 3743744, DOI 10.1137/16M1083633
- D. P. Kroese, W. R. W. Scheinhardt, and P. G. Taylor, Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process, Ann. Appl. Probab. 14 (2004), no. 4, 2057–2089. MR 2099663, DOI 10.1214/105051604000000477
- G. Latouche, S. Mahmoodi, and P. G. Taylor, Level-phase independent stationary distributions for gi/m/1-type markov chains with infinitely-many phases, Perform. Eval., 70 (2013), no. 9, 551–563.
- Guy Latouche and Masakiyo Miyazawa, Product-form characterization for a two-dimensional reflecting random walk, Queueing Syst. 77 (2014), no. 4, 373–391. MR 3225816, DOI 10.1007/s11134-013-9381-7
- G. Latouche and V. Ramaswami, Introduction to matrix analytic methods in stochastic modeling, ASA-SIAM Series on Statistics and Applied Probability, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 1999. MR 1674122, DOI 10.1137/1.9780898719734
- S. Massei. Exploiting rank structures in the numerical solution of Markov chains and matrix functions, PhD thesis, Scuola Normale Superiore, Pisa, 2017.
- Masakiyo Miyazawa, Light tail asymptotics in multidimensional reflecting processes for queueing networks, TOP 19 (2011), no. 2, 233–299. MR 2859501, DOI 10.1007/s11750-011-0179-7
- Allan J. Motyer and Peter G. Taylor, Decay rates for quasi-birth-and-death processes with countably many phases and tridiagonal block generators, Adv. in Appl. Probab. 38 (2006), no. 2, 522–544. MR 2264956, DOI 10.1239/aap/1151337083
- Marcel F. Neuts, Matrix-geometric solutions in stochastic models, Johns Hopkins Series in the Mathematical Sciences, vol. 2, Johns Hopkins University Press, Baltimore, MD, 1981. An algorithmic approach. MR 618123
- Alexandre Ostrowski, Recherches sur la méthode de Graeffe et les zéros des polynomes et des séries de Laurent, Acta Math. 72 (1940), 99–155 (French). MR 1944, DOI 10.1007/BF02546329
- S. Pozza and V. Simoncini, Decay bounds for non-hermitian matrix functions, Technical report, arXiv:1605.01595v3, 2016.
- Yutaka Sakuma and Masakiyo Miyazawa, On the effect of finite buffer truncation in a two-node Jackson network, J. Appl. Probab. 42 (2005), no. 1, 199–222. MR 2144904, DOI 10.1239/jap/1110381381
- S. Serra Capizzano, Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations, Linear Algebra Appl. 366 (2003), 371–402. Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000). MR 1987730, DOI 10.1016/S0024-3795(02)00504-9
- David Stanford, Wayne Horn, and Guy Latouche, Tri-layered QBD processes with boundary assistance for service resources, Stoch. Models 22 (2006), no. 3, 361–382. MR 2247588, DOI 10.1080/15326340600820315
- Yukio Takahashi, Kou Fujimoto, and Naoki Makimoto, Geometric decay of the steady-state probabilities in a quasi-birth-and-death process with a countable number of phases, Stoch. Models 17 (2001), no. 1, 1–24. MR 1852862, DOI 10.1002/asmb.429.abs
- Evgenij E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl. 232 (1996), 1–43. MR 1366576, DOI 10.1016/0024-3795(94)00025-5
Bibliographic Information
- Dario A. Bini
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo B Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 37060
- Email: dario.bini@unipi.it
- Stefano Massei
- Affiliation: Scuola Normale Superiore, Cavalieri 7, 56126 Pisa, Italy
- Address at time of publication: EPFL SB MATH ANCHP, CH-1015 Lausanne, Switzerland
- Email: stefano.massei@epfl.ch
- Beatrice Meini
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo B Pontecorvo 5, 56127 Pisa, Italy
- MR Author ID: 367501
- Email: beatrice.meini@unipi.it
- Received by editor(s): November 24, 2016
- Received by editor(s) in revised form: May 26, 2017
- Published electronically: January 24, 2018
- Additional Notes: This work was supported by GNCS of INdAM
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2811-2830
- MSC (2010): Primary 15A16, 65F60, 15B05
- DOI: https://doi.org/10.1090/mcom/3301
- MathSciNet review: 3834686