An analysis of a class of variational multiscale methods based on subspace decomposition
HTML articles powered by AMS MathViewer
- by Ralf Kornhuber, Daniel Peterseim and Harry Yserentant;
- Math. Comp. 87 (2018), 2765-2774
- DOI: https://doi.org/10.1090/mcom/3302
- Published electronically: January 19, 2018
- PDF | Request permission
Abstract:
Numerical homogenization tries to approximate the solutions of elliptic partial differential equations with strongly oscillating coefficients by functions from modified finite element spaces. We present a class of such methods that are closely related to the methods that have recently been proposed by Målqvist and Peterseim [Math. Comp. 83, 2014, pp. 2583–2603]. Like these methods, the new methods do not make explicit or implicit use of a scale separation. Their comparatively simple analysis is based on the theory of additive Schwarz or subspace decomposition methods.References
- I. Babuška and J. E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal. 20 (1983), no. 3, 510–536. MR 701094, DOI 10.1137/0720034
- Randolph E. Bank and Harry Yserentant, On the $H^1$-stability of the $L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. MR 3150226, DOI 10.1007/s00211-013-0562-4
- Mario Bebendorf, Low-rank approximation of elliptic boundary value problems with high-contrast coefficients, SIAM J. Math. Anal. 48 (2016), no. 2, 932–949. MR 3472012, DOI 10.1137/140991030
- Susanne C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite elements, Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993) Contemp. Math., vol. 180, Amer. Math. Soc., Providence, RI, 1994, pp. 9–14. MR 1312372, DOI 10.1090/conm/180/01951
- Stephen Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (1977), no. 4, 616–619. MR 455281, DOI 10.1137/0714041
- Alexandre Ern and Jean-Luc Guermond, Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal. 51 (2017), no. 4, 1367–1385. MR 3702417, DOI 10.1051/m2an/2016066
- Wolfgang Hackbusch, Hierarchical matrices: algorithms and analysis, Springer Series in Computational Mathematics, vol. 49, Springer, Heidelberg, 2015. MR 3445676, DOI 10.1007/978-3-662-47324-5
- Wolfgang Hackbusch and Florian Drechsler, Partial evaluation of the discrete solution of elliptic boundary value problems, Comput. Vis. Sci. 15 (2012), no. 5, 227–245. MR 3159189, DOI 10.1007/s00791-013-0211-6
- Ralf Kornhuber and Harry Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition, Multiscale Model. Simul. 14 (2016), no. 3, 1017–1036. MR 3536998, DOI 10.1137/15M1028510
- Axel Målqvist and Daniel Peterseim, Localization of elliptic multiscale problems, Math. Comp. 83 (2014), no. 290, 2583–2603. MR 3246801, DOI 10.1090/S0025-5718-2014-02868-8
- P. Oswald, On a BPX-preconditioner for $\textrm {P}1$ elements, Computing 51 (1993), no. 2, 125–133 (English, with English and German summaries). MR 1248895, DOI 10.1007/BF02243847
- Daniel Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors, Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Lect. Notes Comput. Sci. Eng., vol. 114, Springer, [Cham], 2016, pp. 341–367. MR 3616023
- Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581–613. MR 1193013, DOI 10.1137/1034116
- Jinchao Xu and Ludmil Zikatanov, On an energy minimizing basis for algebraic multigrid methods, Comput. Vis. Sci. 7 (2004), no. 3-4, 121–127. MR 2097099, DOI 10.1007/s00791-004-0147-y
- Harry Yserentant, Old and new convergence proofs for multigrid methods, Acta numerica, 1993, Acta Numer., Cambridge Univ. Press, Cambridge, 1993, pp. 285–326. MR 1224685, DOI 10.1017/S0962492900002385
Bibliographic Information
- Ralf Kornhuber
- Affiliation: Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany
- Email: kornhuber@math.fu-berlin.de
- Daniel Peterseim
- Affiliation: Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
- MR Author ID: 848711
- Email: daniel.peterseim@math.uni-augsburg.de
- Harry Yserentant
- Affiliation: Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany
- MR Author ID: 185935
- Email: yserentant@math.tu-berlin.de
- Received by editor(s): November 22, 2016
- Received by editor(s) in revised form: May 6, 2017
- Published electronically: January 19, 2018
- Additional Notes: This research was supported by Deutsche Forschungsgemeinschaft through SFB 1114
- © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2765-2774
- MSC (2010): Primary 65N12, 65N30, 65N55
- DOI: https://doi.org/10.1090/mcom/3302
- MathSciNet review: 3834684