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CONVERGENCE OF ADAPTIVE

DISCONTINUOUS GALERKIN METHODS

CHRISTIAN KREUZER AND EMMANUIL H. GEORGOULIS

Abstract. We develop a general convergence theory for adaptive discontinu-
ous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and
LDG schemes as well as all practically relevant marking strategies. Another
key feature of the presented result is, that it holds for penalty parameters only
necessary for the standard analysis of the respective scheme. The analysis is
based on a quasi-interpolation into a newly developed limit space of the adap-
tively created non-conforming discrete spaces, which enables us to generalise
the basic convergence result for conforming adaptive finite element methods by

Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive
finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707–737].

1. Introduction

Discontinuous Galerkin finite element methods (DGFEM) have enjoyed consid-
erable attention during the last two decades, especially in the context of adaptive
algorithms (ADGMs): the absence of any conformity requirements across element
interfaces characterizing DGFEM approximations allows for extremely general adap-
tive meshes and/or an easy implementation of variable local polynomial degrees in
the finite element spaces. There has been substantial activity in recent years for
the derivation of a posteriori bounds for discontinuous Galerkin methods for ellip-
tic problems [KP03,BHL03,Ain07,HSW07,CGJ09,EV09,ESV10,ZGHS11,DPE12].
Such a posteriori estimates are an essential building block in the context of adaptive
algorithms, which typically consist of a loop

(1.1) SOLVE → ESTIMATE → MARK → REFINE.

The convergence theory, however, for the ‘extreme’ non-conformity case of ADGMs
had been a particularly challenging problem due to the presence of a negative
power of the mesh-size h stemming from the discontinuity-penalization term. As a
consequence, the error is not necessarily monotone under refinement. Indeed, con-
sulting the unprecedented developments of convergence and optimality theory of
conforming adaptive finite element methods (AFEMs) during the last two decades,
the strict reduction of some error quantity appears to be fundamental for most of
the results. In fact, Dörfler’s marking strategy typically ensures that the error is
uniformly reduced in each iteration [Dör96,MNS00,MNS02] and leads to optimal
convergence rates [Ste07, CKNS08, KS11, DK08, BDK12]; compare also with the
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monographs [NSV09, CFP14] and the references therein. Showing that the error
reduction is proportional to the estimator on the refined elements, instance opti-
mality of an adaptive finite element method was shown recently for an AFEM with
modified marking strategy in [DKS16,KS16]. A different approach was, however,
taken in [MSV08,Sie11], where convergence of the AFEM is proved, exploiting that
the approximations converge to a solution in the closure of the adaptively created
finite element spaces in the trial space together with standard properties of the a
posteriori bounds. The result covers a large class of inf-sup stable PDEs and all
practically relevant marking strategies without yielding convergence rates.

Karakashian and Pascal [KP07] gave the first proof of convergence for an adaptive
DGFEM based on a symmetric interior penalty scheme (SIPG) with Dörfler marking
for Poisson’s problem. Their proof addresses the challenge of negative power of h in
the estimator, by showing that the discontinuity-penalization term can be controlled
by the element and jump residuals only, provided that the DGFEM discontinuity-
penalisation parameter, henceforth denoted by σ, is chosen to be sufficiently large;
the element and jump residuals involve only positive powers of h and, therefore, can
be controlled similarly as for conforming methods. The optimality of the adaptive
SIPG was shown in [BN10]; see also [HKW09].

The standard error analysis of the SIPG requires that σ is sufficiently large for
the respective bilinear form to be coercive with respect to an energy-like norm. It
is not known in general, however, whether the choice of σ required for coercivity
of the interior penalty DGFEM bilinear form is large enough to ensure that the
discontinuity-penalization term can be controlled by the element and jump residuals
only. Therefore, the convergence of SIPG is still open for values of σ large enough
for coercivity but, perhaps, not large enough for the crucial result from [KP07] to
hold. To the best of our knowledge, the only result in this direction is the proof of
convergence of a weakly overpenalized ADGM for linear elements [GG14], utilizing
the intimate relation between this method and the lowest order Crouzeix-Raviart
elements.

This work is concerned with proving that the ADGM converges for all values
of σ for which the method is coercive, thereby settling the above discrepancy be-
tween the magnitude of σ required for coercivity and the, typically much larger,
values required for proof of convergence of ADGM. Apart from settling this open
problem theoretically, this new result has some important consequences in practical
computations: it is well known that as σ grows, the condition number of the re-
spective stiffness matrix also grows. Therefore, the magnitude of the discontinuity-
penalization parameter σ affects the performance of iterative linear solvers, whose
complexity is also typically included in algorithmic optimality discussions of adap-
tive finite elements. In addition, the theory presented here includes a large class of
practically relevant marking strategies and covers popular discontinuous Galerkin
methods like the local discontinuous Galerkin method (LDG) and even the non-
symmetric interior penalty method (NIPG), which are coercive for any σ > 0.
Moreover, we expect that it can be generalised to non-conforming discretisations
for a number of other problems like the Stokes equations or fourth order elliptic
problems. However, as for the conforming counterpart [MSV08], no convergence
rates are guaranteed.

The proof of convergence of the ADGM, discussed below, is motivated by the
basic convergence for the conforming adaptive finite element framework of Morin,



CONVERGENCE OF ADAPTIVE DISCONTINUOUS GALERKIN METHODS 2613

Siebert, and Veeser [MSV08]. More specifically, we extend considerably the ideas
from [MSV08] and [Gud10] to be able to address the crucial challenge that the limits
of DGFEM solutions, constructed by the adaptive algorithm, do not necessarily
belong to the energy space of the boundary value problem as well as to conclude
convergence from a perturbed best approximation result.

To highlight the key theoretical developments without the need to resort to com-
plicated notation, we prefer to focus on the simple setting of the Poisson problem
with essential homogeneous boundary conditions and conforming shape regular tri-
angulations. We believe, however, that the results presented below are valid for
general elliptic PDEs including convection and reaction phenomena as well as for
some classes of non-conforming meshes; compare with [BN10].

The remainder of this work is structured as follows. In Section 2 we shall in-
troduce the ADGM framework for Poisson’s equation and state the main result,
which is then proved in Section 5 after some auxiliary results, needed to generalise
[MSV08], are provided in Sections 3 and 4. In particular, in Section 3 a space is
presented, which is generated from limits of discrete discontinuous functions in the
sequence of discontinuous Galerkin spaces constructed by ADGM. Section 4 is then
concerned with proving that the sequence of discontinuous Galerkin solutions pro-
duced by ADGM converges indeed to a generalised Galerkin solution in this limit
space. This follows from an (almost) best-approximation property, generalising the
ideas in [Gud10].

2. The ADGM and the main result

Let a measurable set ω and a m ∈ N. We consider the Lebesgue space L2(ω;Rm)
of square integrable functions over ω with values in Rm, with inner product 〈·, ·〉ω
and associated norm ‖·‖ω. We also set L2(ω) := L2(ω;R). The Sobolev spaceH1(ω)
is the space of all functions in L2(ω) whose weak gradient is in L2(ω;Rd), for d ∈ N.
Thanks to the Poincaré-Friedrichs’ inequality, the closureH1

0 (ω) of C
∞
0 (ω) inH1(ω)

is a Hilbert space with inner product 〈∇·, ∇·〉ω and norm ‖∇·‖ω. Also, we denote

the dual space H−1(ω) of H1
0 (ω), with the norm ‖v‖H−1(ω) := supw∈H1

0 (ω)
〈v, w〉
‖∇w‖ω

,

v ∈ H−1(ω), with dual brackets defined by 〈v , w〉 := v(w), for w ∈ H1
0 (ω).

Let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal (d = 2) or polyhedral (d = 3)
Lipschitz domain. We consider the Poisson problem

(2.1) −Δu = f in Ω, u = 0 on ∂Ω,

with f ∈ L2(Ω). The weak formulation of (2.1) reads: find u ∈ H1
0 (Ω), such that

〈∇u, ∇v〉Ω = 〈f, v〉Ω for all v ∈ H1
0 (Ω).(2.2)

From the Riesz representation theorem, it follows that the solution u exists and is
unique.

2.1. Discontinuous Galerkin method. Let G be a conforming (that is, not con-
taining any hanging nodes) subdivision of Ω into disjoint closed simplicial elements
E so that Ω̄ =

⋃
{E : E ∈ G} and set hE := |E|1/d. Let S = S(G) be the set

of (d− 1)-dimensional element faces S associated with the subdivision G including

∂Ω, and let S̊ = S̊(G) ⊂ S by the subset of interior faces only. We also introduce
the mesh-size function hG : Ω → R, defined by hG(x) := hE, if x ∈ E\∂E and

hG(x) = hS := |S|1/(d−1), if x ∈ S ∈ S and set Γ = Γ(G) =
⋃
{S : S ∈ S} and Γ̊ =
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Γ̊(G) =
⋃
{S : S ∈ S̊}. We assume that G is derived by iterative or recursive newest

vertex bisection of an initial conforming mesh G0; see [Bän91,Kos94,Mau95,Tra97].
We denote by G the family of shape regular triangulations consisting of such sub-
divisions of G0.

Let Pr(E) denote the space of all polynomials on E of degree at most r ∈ N, we
define the discontinuous finite element space

(2.3) V(G) :=
∏
E∈G

Pr(E) ⊂
∏
E∈G

W 1,p(E) =: W 1,p(G), 1 ≤ p ≤ ∞,

and H1(G) := W 1,2(G). Let N = N (G) be the set of Lagrange nodes of V(G) and
define the neighbourhood of a node z ∈ N (G) by NG(z) := {E′ ∈ G : z ∈ E′},
and the union of its elements by ωG(z) =

⋃
{E′ ∈ G : z ∈ E′}. We also define

the corresponding neighbourhoods for all elements E ∈ G by NG(E) := {E′ ∈ G :
E ∩ E′ �= ∅} and ωG(E) =

⋃
{E′ ∈ G : E′ ∩ E �= ∅} =

⋃
{ωG(z) : z ∈ N (E) ∩ E},

respectively, and set ωG(S) :=
⋃
{E ∈ G : S ⊂ E}; compare with Figure 1. The

numbers of neighbours #NG(z) and #NG(E) are uniformly bounded for all z ∈ N ,
respectively, E ∈ G, depending on the shape regularity of G and, thus, on G0.

E

Figure 1. The neighbourhood NG(E) of some E ∈ G.

Let E+, E− be two generic elements sharing a face S := E+ ∩ E− ∈ S̊ and
let n+ and n− be the outward normal vectors of E+, respectively, E− on S. For
q : Ω → R and φ : Ω → Rd, let q± := q|S∩∂E± and φ± := φ|S∩∂E± , and set

{{q}}|S :=
1

2
(q+ + q−), {{φ}}|S :=

1

2
(φ+ + φ−),

[[q]] |S := q+n+ + q−n−, [[φ]] |S := φ+ · n+ + φ− · n−;

if S ⊂ ∂E ∩ ∂Ω, we set {{φ}}|S := φ+ and [[q]] |S := q+n+.
In order to define the discontinuous Galerkin schemes, we introduce the following

local lifting operators. For S ∈ S, we define RS
G : L2(S)d →

∏
E∈G P�(E)d and

LS
G : L2(S) →

∏
E∈G P�(E)d by∫
Ω

RS
G(φ) · τ dx =

∫
S

φ · {{τ}} ds ∀τ ∈
∏
E∈G

P�(E)d(2.4a)
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and ∫
Ω

LS
G(q) · τ dx =

∫
S

q [[τ ]] ds ∀τ ∈
∏
E∈G

P�(E)d,(2.4b)

with � ∈ {r, r + 1}. Note that LS
G(q) and RS

G(φ) vanish outside ωG(S). Moreover,
using the local definition and the boundedness of the lifting operators in a reference
situation together with standard scaling arguments, we have for φ ∈ Pr(S)

d and
q ∈ Pr(S) that∥∥LS

G(φ)
∥∥
Ω
�

∥∥∥h−1/2
G φ

∥∥∥
S

and
∥∥RS

G(q)
∥∥
Ω
�

∥∥∥h−1/2
G q

∥∥∥
S
;(2.4c)

compare with [ABCM02]. Also, here and below we write a � b when a ≤ Cb for a
constant C not depending on the local mesh size of G or other essential quantities for
the arguments presented below. Observing that the sets ωG(S), S ∈ S do overlap
at most d+ 1 times, we have for the global lifting operators RG : L2(Γ)d → V(G)d
and LG : L2(Γ̊) → V(G)d defined by

RG(φ) :=
∑
S∈S

RS
G(φ) and LG(q) :=

∑
S∈S̊

RS
G(q),

that

‖RG([[v]])‖Ω �
∥∥∥h−1/2

G v
∥∥∥
Γ

and ‖LG(β · [[v]])‖Ω � |β|
∥∥∥h−1/2

G v
∥∥∥
Γ̊

for all v ∈ V(G) and β ∈ Rd.
We define the bilinear form BG [·, ·] : V(G)× V(G) → R by

BG [w, v] :=

∫
G
∇w · ∇v dx−

∫
S

(
{{∇w}} · [[v]] + θ{{∇v}} · [[w]]

)
ds

+

∫
S̊

(
β · [[w]] [[∇v]] + [[∇w]]β · [[v]]

)
ds

+

∫
Ω

γ
(
RG([[w]]) + LG(β · [[w]])

)
·
(
RG([[v]]) + LG(β · [[v]])

)
dx

+

∫
S

σ

hG
[[w]] · [[v]] ds;

(2.5)

for θ ∈ {±1}, γ ∈ {0, 1}, β ∈ Rd and σ ≥ 0. Here we have used the shorthand
notation ∫

G
· dx :=

∑
E∈G

∫
E

· dx and

∫
S
· ds :=

∑
S∈S

∫
S

· ds.

We consider the choices θ = 1, β = 0, and γ = 0 yielding the symmetric interior
penalty method (SIPG) [DD76], θ = −1, β = 0, and γ = 0 which gives the nonsym-
metric interior penalty methods (NIPG) [RWG99], and θ = 1, β ∈ Rd, and γ = 1
which yields the local discontinuous Galerkin method (LDG) [CS98]; compare also
with [ABCM02] and [JNS16].

In all three cases, the corresponding discontinuous Galerkin finite element method
(DGFEM) then reads: find uG ∈ V(G) such that

(2.6) BG [uG , vG ] =

∫
Ω

fvG dx =: l(vG) for all vG ∈ V(G).
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Upon denoting by ∇pwv the piecewise gradient ∇pwv|E = ∇v|E for all E ∈ G, the
corresponding energy norm |||·|||G is defined by

|||w|||G :=
(∥∥∇pww

∥∥2
Ω
+ σ̄

∥∥∥h−1/2
G [[w]]

∥∥∥2
Γ

)1/2

,

for w|E ∈ H1(E), E ∈ G. Here σ̄ := max{1, σ}. Also, for some subset M ⊂ G with
ω =

⋃
{E | E ∈ M}, we define

|||w|||M :=
(∥∥∇pww

∥∥2
ω
+ σ̄

∥∥∥h−1/2
G [[w]]

∥∥∥2
Γ(M)

)1/2

.

If for SIPG we have σ := Cσr
2 for some constant Cσ > 0 sufficiently large, σ > 0

for NIPG and for LDG σ > 0 when � = r and σ = 0 when � = r+ 1 ([JNS16]), then
there exists α = α(σ) > 0, such that

α |||w|||2G ≤ BG [w, w] ∀w ∈ V(G),(2.7)

i.e., all three DGFEMs are coercive in V(G). Note that coercivity (2.7) holds true
also for functions in H1(G) after extending the discrete bilinear form using some
liftings; see, e.g., [Arn82,ABCM02, JNS16] for details. The choice σ̄ = max{1, σ}
accounts for the fact that we can have σ = 0 for the LDG in [JNS16].

From standard scaling arguments, we conclude the following local Poincaré-
Friedrichs inequality from [Bre03,BO09].

Proposition 1 (Poincaré-V(G)). Let G be a triangulation of Ω and G� some re-
finement of G. Then, for v ∈ V(G�), E ∈ G and vE := |ωG(E)|−1

∫
ωG(E)

v dx, we

have

‖v − vE‖2ωG(E) �
∫
ωG(E)

h2
G |∇pwv|2 dx+

∫
S∈S�,S⊂ωG(E)

h2
Gh

−1
G�

[[v]]
2
ds,

where S� = S(G�) and the hidden constant depends on d and on the shape regularity
of NG(E).

The next important result from [KP03, Theorem 2.2] (compare also with [BN10,
Lemma 6.9] and [BO09, Theorem 3.1]) quantifies the local distance of a discrete
non-conforming function to the conforming subspace with the help of the scaled
jump terms.

Proposition 2. For G ∈ G, there exists an interpolation operator IG : H1(G) →
V(G) ∩H1

0 (Ω), such that we have∥∥∥h1/2
G (v − IGv)

∥∥∥2
L2(E)

+ ‖∇(v − IGv)‖2L2(E) �
∫
∂E

h−1
G [[v]]

2
ds

for all E ∈ G and v ∈ V(G).

From this, we can easily deduce the following broken Friedrichs type inequality;
compare also with [BO09, (4.5)].

Corollary 3 (Friedrichs-V(G)). Let G ∈ G, then

‖v‖L2(Ω) � |||v|||G for all v ∈ V(G).

Let BV (Ω) denote the Banach space of functions with bounded variation equiped
with the norm

‖v‖BV (Ω) = ‖v‖L1(Ω) + |Dv|(Ω),
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where Dv is the measure representing the distributional derivative of v with total
variation

|Dv|(Ω) = sup
φ∈C1

0 (Ω)d,‖φ‖
L∞(Ω)≤1

∫
Ω

v div φ dx.

Here the supremum is taken over the space C1
0 (Ω)

d of all vector valued continuously
differentiable functions with compact support in Ω.

Another crucial result [BO09, Lemma 2] states then that the total variation of
the distributional derivative of broken Sobolev functions is bounded by the discon-
tinuous Galerkin norm.

Proposition 4. For G ∈ G we have that

|Dv|(Ω) � ‖∇v‖L1(Ω) +

∫
S
|[[v]]| ds � |||v|||G for all v ∈ H1(G).

2.2. A posteriori error bound. We recall the a posteriori results from [KP03,
BN10,BGC05,BHL03]; compare also with [CGJ09].

For v ∈ V(G), we define the local error indicators for E ∈ G by

EG(v, E) :=
(∫

E

h2
G |f +Δv|2 dx+

∫
∂E∩Ω

hG [[∇v]]
2
ds+ σ

∫
∂E

h−1
G [[v]]

2
ds

)1/2

;

when v = uG , we shall write EG(E) := EG(uG , E). Also, for M ⊂ G, we set

EG(v,M) :=
( ∑

E∈M
E(v, E)2

)1/2

.

Proposition 5. Let u ∈ H1
0 (Ω) be the solution of (2.2) and let uG ∈ V(G) be its

respective DGFEM approximation (2.6) on the grid G ∈ G. Then,

|||u− uG |||2G �
∑
E∈G

EG(E)2.

The efficiency of the estimator follows with the standard bubble function tech-
nique of Verfürth [Ver96,Ver13]; compare also with [KP03, Theorem 3.2], [Gud10,
Lemma 4.1] and Proposition 22 below.

Proposition 6. Let u ∈ H1
0 (Ω) be the solution of (2.2) and let G ∈ G. Then, for

all v ∈ V(G) and E ∈ G, we have∫
E

h2
G |f +Δv|2 dx+

∫
∂E∩Ω

hG [[∇v]]
2
ds

� ‖u− v‖2ωG(E) +
∥∥∇pw(u− v)

∥∥2
ωG(E)

+ osc(NG(E), f)2,

with data-oscillation defined by

osc(M, f) :=
( ∑

E′∈M
osc(E, f)2

)1/2

,

where osc(E, f) := inf
fE∈Pr−1

‖hG(f − fE)‖E

for all M ⊂ G. In particular, this implies

EG(v, E) � |||v − u|||NG(E) + osc(NG(E), f).
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Remark 7. Note that the presented theory obviously applies to all locally equivalent
estimators as well; compare, e.g., with [KP03,BN10,BGC05,BHL03,CGJ09]. For
the sake of a unified presentation, we restrict ourselves to the above representation.

2.3. Adaptive discontinuous Galerin finite element method (ADGM). The
adaptive algorithm, whose convergence will be shown below, reads as follows.

Algorithm 8 (ADGM). Starting from an initial triangulation G0, the adaptive
algorithm is an iteration of the following form:

(1) uk = SOLVE(V(Gk));
(2) {Ek(E)}E∈Gk

= ESTIMATE(uk,Gk);
(3) Mk = MARK

(
{Ek(E)}E∈Gk

,Gk

)
;

(4) Gk+1 = REFINE(Gk,Mk); increment k.

Here we have used the notation Ek(E) := EGk
(E) for brevity.

SOLVE. We assume that the output

uG = SOLVE(V(G))

is the DGFEM approximation (2.6) of u with respect to V(G).
ESTIMATE. We suppose that

{EG(E)}E∈G := ESTIMATE(uG ,G)

computes the error indicators from Section 2.2.

MARK. We assume that the output

M := MARK({EG(E)}E∈G ,G)

of marked elements satisfies

EG(E) ≤ g(EG(M)) for all E ∈ G \M.(2.8)

Here g : R+
0 → R

+
0 is a fixed function, which is continuous in 0 with g(0) = 0, i.e.,

limε→0 g(ε) = 0.

REFINE. We assume for M ⊂ G ∈ G, that for the refined grid

G̃ := REFINE(G,M)

we have

E ∈ M ⇒ E ∈ G \ G̃,(2.9)

i.e., each marked element is refined at least once.

2.4. The main result. The main result of this work states that the sequence of
discontinuous Galerkin approxiations, produced by ADGM, converges to the exact
solution of (2.1).

Theorem 9. We have that

Ek(Gk) → 0 as k → ∞.

In particular, this implies that

|||u− uk|||k → 0 as k → ∞.
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Figure 2. Selection of a sequence of triangulations of Ω = (0, 1)2,
where in each iteration the elements in Ω− = [0, 0.5] × [0, 0.5] are
marked for refinement. The elements G+ in the remaining domain
Ω \ Ω− are, after some iteration, not refined anymore. Moreover,
after some iteration, their whole neighbourhood is not refined any-
more.

3. A limit space and quasi-interpolation

In this section we shall first introduce a new limit space V∞ of the sequence
of adaptively constructed discontinuous finite element spaces {V(Gk)}k∈N. A new
quasi-interpolation operator is then introduced in Section 3.3 in order to to prove
that there exists a unique Galerkin solution u∞ of a generalised discontinuous
Galerkin problem in V∞.

3.1. Sequence of partitions. The ADGM produces a sequence {Gk}k∈N0
of nested

admissible partitions of Ω. Following [MSV08], we define

G+ :=
⋃
k≥0

⋂
j≥k

Gj and Ω+ := Ω(G+)

to be the set and domain of all elements, respectively, which eventually will not be
refined any more; here Ω(X) := interior (

⋃
{E : E ∈ X}) for a collection of elements

X. We also define the complementary domain Ω− := interior(Ω\Ω+). For the ease
of presentation, in what follows, we shall replace subscripts Gk by k to indicate the
underlying triangulation, e.g., we write Nk(E) instead of NGk

(E).
The following result states that neighbours of elements in G+ are eventually also

elements of G+; cf. [MSV08, Lemma 4.1].

Lemma 10. For E ∈ G+ there exists a constant K = K(E) ∈ N0, such that

Nk(E) = NK(E) for all k ≥ K,

i.e., we have Nk(E) ⊂ G+ for all k ≥ K.

Next, for a fixed k ∈ N0, we set

G−
k := {E ∈ Gk : ωk(E) ⊂ Ω−}, Ω−

k := Ω(G−
k ),

G+
k := Gk ∩ G+, Ω+

k := Ω(G+
k ),

G++
k := {E ∈ Gk : Nk(E) ⊂ G+}, Ω++

k := Ω(G++
k ),

G�
k := Gk \ (G++

k ∪ G−
k ), Ω�

k := Ω(G�
k);

compare also with Figure 2. This notation is also adopted for the corresponding
faces, e.g., we denote S+

k := S(G+
k ) and S̊+

k := S̊(G+
k ) and correspondingly for all

other above subtriangulations of Gk.
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The next lemma is related to [MSV08, (4.15) and Corollary 4.1]. However, the
definitions of Ω�

k and Ω−
k differ from the corresponding ones in [MSV08], which

requires some modifications in the proof.

Lemma 11. We have that limk→∞ |Ω�
k| = 0 and limk→∞ ‖hkχΩ−

k
‖L∞(Ω) = 0, with

χΩ−
k
denoting the characteristic function of Ω−

k .

Proof. In order to prove the first claim, we begin by observing that |Ω�
k| ≤ |Ω− \

Ω−
k |+ |Ω+ \ Ω++

k | and consider the two terms on the right-hand side separately.

Since #G+
k < ∞, we have, thanks to Lemma 10, that for all k ∈ N there exists

K = K(k) ≥ k, such that G++
K ⊃ G+

k . Consequently, we have

|Ω+ \ Ω++
K(k)| ≤ |Ω+ \ Ω+

k | =
∑

E∈G+\G+
k

|E| → 0,

as k → ∞. This holds because the right-hand side is a tail of the series
∑

E∈G+ |E|,
which is convergent, as |E| > 0 and all partial sums are bounded by |Ω|. Since
|Ω+ \ Ω++

k | is monotonically decreasing, we conclude that |Ω+ \ Ω++
k | → 0 as

k → ∞.
We observe that the sequence {Ω−

k }k∈N is nested, i.e., Ω−
0 ⊂ Ω−

1 ⊂ Ω−
2 ⊂ · · · ⊂

Ω−. Therefore, we have that the sequence {|Ω− \ Ω−
k |}k∈N is converging, because

it is monotonically decreasing. Assume that limk→∞ |Ω− \ Ω−
k | �= 0, then we have

by the continuity of the Lebesgue measure that

0 �= lim
k→∞

|Ω− \ Ω−
k | =

∣∣Ω− \
⋃
k≥0

Ω−
k

∣∣.
Consequently, there exists a ball Bρ with some radius ρ > 0 such that Bρ ⊂
Ω− \

⋃
k≥0Ω

−
k . For k ∈ N let GBρ

k := {E ∈ Gk : E ∩ Bρ �= ∅}, then there exists

E ∈ GBρ

k with |E| � ρ independent of k. This follows from the fact that, since

Bρ ⊂ Ω− \ Ω−
k , there exists no E ∈ Gk with Ω(Nk(E)) ⊂ Bρ, together with the

local quasi-uniformity of Gk. Thanks to the fact that the size of an element is
reduced under refinement by a factor 2−1/d and that the grids Gk are nested, we
have that there is some K > 0, such that there exists E ∈ GBρ

k with E ∈ GK for all
k ≥ K, i.e., E ∈ G+. This is the contradiction since ∅ �= E ∩Bρ ⊂ E ∩ Ω−.

The second claim follows from [MSV08, Corollary 4.1] noting that Ω− ⊂ Ω0
k with

Ω0
k as in [MSV08]. �

3.2. The limit space. In this section, we shall investigate the limit of the finite
element spaces Vk := V(Gk), k ∈ N. To this end, we define

V∞ :=
{
v ∈ BV (Ω) : v|Ω− ∈ H1

∂Ω∩∂Ω−(Ω−) and v|E ∈ Pr ∀E ∈ G+

such that ∃{vk}k∈N, vk ∈ Vk with lim
k→∞

|||v − vk|||k = 0

and lim sup
k→∞

|||vk|||k < ∞
}
;

here H1
∂Ω∩∂Ω−(Ω−) denotes the space of functions from H1

0 (Ω) restricted to Ω−.
Note that for v ∈ BV (Ω) there exists the L1-trace of v on Γk =

⋃
{S : S ∈ Sk};

compare, e.g., with the trace theorem [BO09, Theorem 4.2]. In other words, v is
measurable with respect to the (d− 1)-dimensional Hausdorff measure on Sk and,
therefore, the term |||v|||k, v ∈ V∞, makes sense. Obviously, we have Vk∩C(Ω) ⊂ V∞
for all k ∈ N and, thus, V∞ is not empty.
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Setting h+ := hG+ and S+ := S(G+), we define

〈v, w〉∞ :=

∫
Ω−

∇v · ∇w dx+

∫
G+

∇v · ∇w dx+ σ̄

∫
S+

h−1
+ [[v]] [[w]] ds,

and |||v|||∞ := 〈v, v〉1/2∞ for all v, w ∈ V∞. For brevity, we shall frequently use the
notation ∫

Ω

∇pwv · ∇pww dx ≡
∫
Ω−

∇v · ∇w dx+

∫
G+

∇v · ∇w dx.

We shall next list some basic properties of the space V∞.

Proposition 12. For v ∈ V∞, we have

|||v|||k ↗ |||v|||∞ < ∞ as k → ∞.

In particular, for fixed � ∈ N, let E ∈ G�; then, we have∫
{S∈Sk:S⊂E}

h−1
k [[v]]

2
ds ↗

∫
{S∈S+:S⊂E}

h−1
+ [[v]]

2
ds, as k → ∞.

Proof. Since v ∈ V∞, there exists {vk}k∈N, vk ∈ Vk with limk→∞ |||v − vk|||k = 0
and lim supk→∞ |||vk|||k < ∞. We first observe that

|||v|||k ≤ |||v − vk|||k + |||vk|||k < ∞
uniformly in k. Thanks to the mesh-size reduction, i.e., hm ≤ hk for all m ≥ k, we
conclude that ∫

Sk

h−1
k [[v]]2 ds ≤

∫
Sk

h−1
m [[v]]2 ds ≤

∫
Sm

h−1
m [[v]]2 ds,

thanks to the inclusion
⋃

S∈Sk
S ⊂

⋃
S∈Sm

S. Therefore, we have |||v|||k ≤ |||v|||m
for all m ≥ k and, thus, {|||v|||k}k∈N converges. Consequently, for ε > 0 there exists
K = K(ε), such that for all k ≥ K and m > k large enough, we have

ε > | |||v|||2m − |||v|||2k | = σ̄

∫
Sm\(Sm∩Sk)

h−1
m [[v]]2 ds− σ̄

∫
Sk\(Sm∩Sk)

h−1
k [[v]]2 ds

≥ (21/(d−1) − 1) σ̄

∫
Sk\(Sm∩Sk)

h−1
k [[v]]2 ds

≥ (21/(d−1) − 1) σ̄

∫
Sk\S+

k

h−1
k [[v]]2 ds.

This follows from the fact that hm|S ≤ 2−1/(d−1)hk|S for all S ∈ Sk \ (Sm ∩ Sk)
together with S+

k = Sm ∩ Sk for sufficiently large m > k.

Therefore, we have
∫
Sk\S+

k
h−1
k [[v]]2 ds → 0 as k → ∞ and, thus,

|||v|||2k =

∫
Ω

|∇pwv|2 dx+ σ̄

∫
S+
k

h−1
k [[v]]

2
ds+ σ̄

∫
Sk\S+

k

h−1
k [[v]]

2
ds → |||v|||2∞ + 0.

This proves the first claim. The second claim is a localised version and follows
completely analogously. �

Lemma 13 (Poincaré-V∞). Fix k ∈ N and let E ∈ Gk. Then for v ∈ V∞ and
vE := 1

|ωk(E)|
∫
ωk(E)

v dx, we have

‖v − vE‖2ωk(E) �
∥∥hk∇pwv

∥∥2
ωk(E)

+

∫
{S∈S+:S⊂ωk(E)}

h2
kh

−1
+ [[v]]2 ds.
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Proof. By the definition of V∞, there exists v� ∈ V�, � ∈ N0, with lim�→∞ |||v − v�|||�
= 0 and lim sup�→∞ |||v�|||� < ∞. Therefore, we have

∥∥∇pwv�
∥∥2
ωk(E)

+

∫
{S∈S�:S⊂ωk(E)}

h−1
� [[v�]]

2
ds

→
∥∥∇pwv

∥∥2
ωk(E)

+

∫
{S∈S+:S⊂ωk(E)}

h−1
+ [[v]]

2
ds as � → ∞;

see Proposition 12. Moreover, we have

‖vE − v�,E‖ωk(E) ≤ ‖v − v�‖ωk(E) ≤ |||v − v�|||� → 0 as � → ∞,

where v�,E := 1
|ωk(E)|

∫
ωk(E)

v� dx. We conclude with Proposition 1 that

‖v − vE‖2ωk(E) ← ‖v� − v�,E‖2ωk(E)

�
∥∥hk∇pwv�

∥∥2
ωk(E)

+

∫
{S∈S�:S⊂ωk(E)}

h2
kh

−1
� [[v�]]

2
ds

→
∥∥hk∇pwv

∥∥2
ωk(E)

+

∫
{S∈S+:S⊂ωk(E)}

h2
kh

−1
+ [[v]]2 ds,

as � → ∞. �

In order to extend the dG bilinear form (2.5) to V∞, we need to define ap-
propriate lifting operators. For each S ∈ S+, there exists � = �(S) ∈ N, such
that S ∈ S++

� . We define the local lifting operators RS
∞ : L2(S)d → L2(Ω)d and

LS
∞ : L2(S) → L2(Ω)d by

RS
∞ = RS

� := RS
G�

and LS
∞ = LS

� := LS
G�
.(3.1)

From (2.4) it is easy to see, that RS
� and LS

� depend only on S and the at most
two adjacent elements E,E′ ∈ G+

� with S ⊂ E ∩ E′. Therefore, and thanks to the

fact that the G+
k are nested, we have that RS

� = RS
k for all k ≥ � and, thus, the

definition is unique. We formally define the global lifting operators by

R∞ :=
∑

S∈S+

RS
∞ and L∞ :=

∑
S∈S̊+

LS
∞;

here S̊+ := {S ∈ S+ : S �∈ ∂Ω}.
Moreover, from the local estimates (2.4c), it is easy to see that for v ∈ V∞

and β ∈ Rd, we have that
∑

S∈S+
k
RS

∞([[v]]) and
∑

S∈S̊+
k
LS
∞(β · [[v]]) are Cauchy

sequences in L2(Ω)d. Consequently, R∞([[v]]), L∞(β · [[v]]) ∈ L2(Ω) are well posed
and we have

‖R∞([[v]])‖Ω �
∥∥∥h−1/2

+ v
∥∥∥
Γ+

and ‖L∞(β · [[v]])‖Ω � |β|
∥∥∥h−1/2

+ v
∥∥∥
Γ̊+

,(3.2)
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where Γ+ =
⋃
{S : S ∈ S+} and Γ̊+ =

⋃
{S : S ∈ S̊+}. This enables us to

generalise the discontinuous Galerkin bilinear form to V∞ setting

B∞[w, v] :=

∫
Ω

∇pww · ∇pwv dx−
∫
S+

(
{{∇w}} · [[v]] + θ{{∇v}} · [[w]]

)
ds

+

∫
S̊+

(
β · [[w]] [[∇v]] + [[∇w]]β · [[v]]

)
ds

+

∫
Ω

γ
(
R∞([[w]]) + L∞(β · [[w]])

)
·
(
R∞([[v]]) + L∞(β · [[v]])

)
dx

+

∫
S+

σ

h+
[[w]] · [[v]] ds

for v, w ∈ V∞.

Lemma 14. The space
(
V∞, 〈·, ·〉∞

)
is a Hilbert space.

Corollary 15. There exists a unique u∞ ∈ V∞, such that

B∞[u∞, v] =

∫
Ω

fv dx for all v ∈ V∞.(3.3)

In order to prove the last two statements, we introduce a new quasi-interpolation,
which is designed in due consideration of the future refinements. The proofs of
Lemma 14 and Corollary 15 are postponed to the end of Section 3.3.

3.3. Quasi-interpolation. We shall now define a quasi-interpolation operator Πk,
which maps into V∞ ∩Vk; this will be a key technical tool in the analysis. On the
one hand, membership in V∞∩Vk suggests to use some Clément type interpolation
since the mapped functions need to be continuous in Ω−. On the other hand,
the fact that the ADGM may leave some elements (namely, G+

k ⊃ G++
k ) unrefined,

suggests to define Πk to be the identity on these elements. Note that the quasi-
interpolation operator from [CGS13] is motivated by a similar idea in order to map
from one Crouzeix-Raviart space into its intersection with a finer one.

For fixed k ∈ N, let {ΦE
z : E ∈ Gk, z ∈ Nk(E)} be the Lagrange basis of

Vk := V(Gk), i.e., Φ
E
z is a piecewise polynomial of degree r with supp(ΦE

z ) = E
and

ΦE
z (y) = δzy for all z, y ∈ Nk.

Its dual basis is then the set {ΨE
z : E ∈ Gk, z ∈ Nk(E)} of piecewise polynomials

of degree r, such that supp(ΨE
z ) = E and〈

ΨE
y , Φ

E
z

〉
Ω
= δzy for all z, y ∈ Nk(E).

For all � ≥ k, we define Πk : L1(Ω) → L1(Ω) by

Πkv :=
∑
E∈Gk

∑
z∈Nk(E)

(Πkv)|E(z) ΦE
z ,(3.4)

where for z ∈ Nk(E) we have that

(Πkv)|E(z) :=

⎧⎪⎨
⎪⎩
∫
E
vΨE

z dx, if Nk(z) ∩ G++
k �= ∅,

0, else if z ∈ ∂Ω,∑
E′∈Nk(z)

|E′|
|ωk(z)|

∫
E′ vΨ

E′

z dx, else.

(3.5)
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Lemma 16 (Properties of Πk). The operator Πk : L1(Ω) → L1(Ω) defined in (3.4)
has the following properties:

(1) Πk : Lp(Ω) → Lp(Ω) is a linear and bounded projection for all 1 ≤ p ≤ ∞.
In particular, we have that

‖Πkv‖Lp(E) � ‖v‖Lp(ωk(E)) ,

where the constant solely depends on p, r, d, and the shape regularity of G0.
(2) Πkv ∈ Vk for all v ∈ L1(Ω);
(3) Πkv|E = v|E , if E ∈ Gk and v|ωk(E) ∈ Pr(ωk(E));

(4) Πkv|E = v|E , if E ∈ G++
k and v|E ∈ Pr(E); if, moreover, v ∈ Vk, then also

[[v −Πkv]] |S ≡ 0 for all S ∈ S++
k .

(5) Πkv|Ω\Ω+
k
∈ C(Ω \ Ω+

k ) and [[Πkv]] = 0 on ∂(Ω \ Ω+
k );

(6) Πkv = v, for all v ∈ Vk with v|Ω\Ω++
k

∈ C(Ω \ Ω++
k );

(7) Πkv ∈ V∞, and we have |||Πkv|||k = |||Πkv|||∞.

Proof. Claims (1)–(3) follow by standard estimates for the Scott-Zhang opera-
tor [SZ90,DG12].

Assertion (4) is a consequence of the definition (3.5) of Πk since E ∈ G++
k implies

that Nk(E)∩G++
k = Nk(E). Note that v ∈ V(G) implies v|E ∈ Pr(E) for all E ∈ Gk

and thus (Πkv)|E(z) = v|E(z) for all E ∈ Nk(z) if Nk(z) ∩ G++
k �= ∅. This is in

particular the case when z ∈ S ∩Nk with S ∈ S++
k .

For E ∈ Gk \ G+
k , we have that Nk(z) ∩ G++

k = ∅ since otherwise there exists

E′ ∈ Nk(E) ∩ G++
k and thus E ∈ Nk(E

′), which implies E ∈ G+
k , thanks to the

definition of G++
k . Therefore, (3.5) implies that Πkv is continuous on Ω \ Ω+

k .

Moreover, for z ∈ Nk(E) ∩ Ω \ Ω+
k , definition (3.5) is independent of E and thus

Πkv does not jump across the boundary Ω \ Ω+
k . This completes the proof of (5).

On the one hand, if v ∈ Vk with v|Ω\Ω+
k

∈ C(Ω \ Ω++
k ), then we have clearly

Πkv|Ω\Ω+
k

= v|Ω\Ω+
k
. On the other hand, we can conclude Πkv|Ω++

k
= v|Ω++

k

from (4). This yields (6).
The claim (7) is an immediate consequence of (5). �

Lemma 17 (Stability). Let v ∈ V� for some k ≤ � ∈ N0 ∪ {∞}. Then for all
E ∈ Gk, we have∫

E

|∇Πkv|2 dx+

∫
∂E

h−1
k [[Πkv]]

2 ds

�
∫
ωk(E)

∣∣∇pwv
∣∣2 dx+

∑
E′∈G�,E′⊂ωk(E)

∫
∂E′

h−1
� [[v]]

2
ds,

setting G� := G+ and h� := h+, when � = ∞. In particular, we have |||Πkv|||k � |||v|||�.

Proof. We begin by noting that, summing over all elements in Gk and accounting
for the finite overlap of the domains ωk(E), E ∈ Gk, the global stability estimate is
an immediate consequence of the corresponding local one.

We first assume � < ∞. LetE ∈ G++
k ⊂ G++

� . Then, thanks to Lemma 16(4), we
have Πkv|E = v|E . Moreover, let E′ ∈ Gk such that E∩E′ ∈ Sk; then Nk(z) � E ∈
G++
k and thus (Πkv)|E′(z) = v|E′(z) for all z ∈ Nk(E)∩Nk(E

′). Consequently, we
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have [[Πkv]] = [[v]] on ∂E, in other words,∫
E

|∇Πkv|2 dx+

∫
∂E

h−1
k [[Πkv]]

2 ds =

∫
E

|∇v|2 dx+

∫
∂E

h−1
k [[v]]2 ds.(3.6)

Now, let E ∈ Gk be arbitrary. Then, an inverse estimate and the local stability
(Lemma 16 (1) and (3)) for vE := 1

|ωk(E)|
∫
ωk(E)

v dx ∈ R, imply

∫
E

|∇Πkv|2 dx �
∫
E

h−2
k |Πk(v − vE)|2 dx �

∫
ωk(E)

h−2
k |v − vE |2 dx

�
∑

E′⊂ωk(E),E′∈G�

∫
E′

|∇v|2 dx+

∫
∂E′

h−1
� [[v]]2 ds;

(3.7)

here the last estimate follows from the broken Poincaré inequality, Proposition 1.
Now, if for all E′ ∈ Gk, with E′ ⊂ ωk(E), we have E′ �∈ G++

k , which implies

E ∈ Gk\G++
k . Then, thanks to Lemma 16(5), we have that Πkv is continuous across

∂E, i.e., [[Πkv]] |∂E = 0. On the contrary, assuming that there exists E′ ∈ G++
k ,

with E′ ∈ Nk(E), we conclude that E ∈ Nk(E
′) and thus E ∈ G+. From the local

quasi-uniformity, we thus have for all E′′ ∈ G� with E′′ ∩ E �= ∅ that |E′′| � |E|.
Let z ∈ Nk(E); then, according to (3.5), we have that

[[Πkv]] |∂E(z) =
{
[[v]] |∂E(z), if ∃E′ ∈ Nk(z) ∩ G++

k ;

0, else.

Using standard scaling arguments, this implies∫
∂E

[[Πkv]]
2 ds � |∂E|

∑
z∈Nk∩∂E

(
[[Πkv]] |∂E(z)

)2
= |∂E|

∑
z∈Nk∩∂E

(
[[v]] |∂E(z)

)2

≤ |∂E|
∑

z∈N�∩∂E

(
[[v]] |∂E(z)

)2
�

∫
∂E

[[v]]2 ds.

Combining this with (3.7) proves the local bound in the case � < ∞.
For � = ∞, we observe that a bound similar to (3.7) can be obtained with

Lemma 13 instead of Proposition 1. The local bound then follows by arguing as in
the case � < ∞. �

Corollary 18 (Interpolation estimate). For v ∈ V�, k ≤ � ∈ N ∪ {∞}, we have
that∫

E

|∇pwv −∇pwΠkv|2 dx+

∫
E

h−2
k |v − Πkv|2 +

∫
∂E

h−1
k [[v −Πkv]]

2

�
∫
ωk(E)

|∇pwv|2 dx+
∑

S∈S�,S⊂ωk(E)

∫
S

h−1
k [[v]]

2
,

where we set G� := G+ and h� := h+, when � = ∞. The constant depends only on
d, r and the shape regularity of G0.
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Proof. The claim follows from Lemma 16(3), together with the stability Lemma 17
and the local Poincaré inequality from Proposition 1, respectively, Lemma 13. �

The next result concerns the convergence of the quasi-interpolation.

Lemma 19. Let v ∈ V∞; then,

|||v −Πkv|||k → 0 and |||v −Πkv|||∞ → 0

as k → ∞.

Proof. For brevity, set vk := Πkv ∈ Vk. Thanks to Lemma 13 and Lemma 16(4)
and (5), we have that

|||v − vk|||2k �
∫
Gk\G++

k

|∇pwv −∇pwvk|2 dx+

∫
Sk\S++

k

h−1
k |[[v − vk]]|2 ds

≤
∫
G−
k

|∇pwv −∇pwvk|2 dx+

∫
G�
k

|∇pwv −∇pwvk|2 dx

+

∫
S−
k

h−1
k |[[v − vk]]|2 ds+

∫
S�
k

h−1
k |[[v − vk]]|2 ds

= I−k + I�k + II−k + II�k .

We first observe that II−k = 0 since v, vk ∈ H1(Ω−
k ) (note that [[v]] = [[vk]] = 0 even

on the boundary ∂Ω−
k since Ω−

k ⊂ Ω−). We conclude from Lemma 17 that

I�k + II�k =

∫
G�
k

|∇pwv −∇pwvk|2 dx+

∫
S�
k

h−1
k |[[v − vk]]|2 ds

�
∑
E∈G�

k

(∫
ωk(E)

|∇pwv|2 dx+
∑

E′∈G+,E′⊂ωk(E)

∫
∂E′

h−1
+ [[v]]2 ds

)

�
∑
E∈G�

k

∫
ωk(E)

|∇pwv|2 dx+

∫
S+\S++

k

h−1
+ [[v]]

2
ds.

The first term on the right-hand side vanishes in the limit k → ∞, from Lemma 11.
The second term is the tail of a convergent series, since it is bounded thanks to
|||v|||∞ < ∞ and all of its summands are positive. Therefore, I�k+II�k → 0 as k → ∞.

Thus, it remains to prove that I−k → 0 as k → ∞. To this end, recall that
H1

∂Ω∩∂Ω−(Ω−) is the space of restrictions of H1
0 (Ω)-functions to Ω−. Since H2

0 (Ω)
is dense in H1

0 (Ω), for ε > 0, there exists vε ∈ H2
0 (Ω) such that ‖v − vε‖H1(Ω−) ≤

‖v − vε‖H1(Ω) < ε. Combining Lemma 16(3) and (1) with the Bramble-Hilbert
lemma (see, e.g., [BS02]), we obtain with standard arguments that∫

G−
k

|∇v −∇vk|2 dx � ε2 +

∫
G−
k

|∇vε −∇Πkvε|2 dx

� ε2 +

∫
Nk(G−

k )

h2
k

∑
|α|=2

|Dαvε|2 dx

� ε2 + ‖hkχΩ−
k
‖2L∞(Ω)

∫
Ω

∑
|α|=2

|Dαvε|2 dx,
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where we have used that ‖hk‖L∞(Ω(Nk(G−
k ))) � ‖hkχΩ−

k
‖L∞(Ω), thanks to the lo-

cal quasi-uniformity of Gk. Thus, we have ‖hkχΩ−
k
‖L∞(Ω) → 0 as k → ∞ from

Lemma 11 and, therefore, we can conclude that limk→∞ I−k � ε. This completes
the proof of the first claim, since ε > 0 is arbitrary.

The second claim follows similarly by replacing Sk by S+ and noting that
|||Πkv|||k = |||Πkv|||∞, since Πkv is continuous in Ω \ Ω+. �

Proof of Lemma 14. The positivity of |||·|||∞ on V∞ follows from Lemma 19 together
with ‖w‖BV (Ω) ≤ |||w|||� for all w ∈ V�; see Corollary 3 and Proposition 4.

In order to prove that V∞ is complete with respect to |||·|||∞, let 0 �= v ∈ V
|||·|||∞
∞ ,

i.e., there exists a sequence {v�}�∈N ⊂ V∞, such that
∣∣∣∣∣∣v − v�

∣∣∣∣∣∣
∞ → 0 as � → ∞.

Note that v�|E ∈ Pr for all E ∈ G+ and thus it follows from the definition of |||·|||∞
that also v|E ∈ Pr for all E ∈ G+.

For each �,m ∈ N, we define v�m := Πmv� ∈ Vm and since v�m ∈ C(Ω \ Ω+)
(see Lemma 16(5)), we have that

∣∣∣∣∣∣v�m∣∣∣∣∣∣
�
=

∣∣∣∣∣∣v�m∣∣∣∣∣∣
∞ for all � ≥ m ∈ N. Thanks to

Lemma 19, for each � ∈ N, there exists a monotone sequence {m�}� ∈ N, such that∣∣∣∣∣∣v� − v�m�

∣∣∣∣∣∣
∞ ≤ 1

� and thus

∣∣∣∣∣∣v − v�m�

∣∣∣∣∣∣
m�

≤
∣∣∣∣∣∣v − v�m�

∣∣∣∣∣∣
∞ ≤

∣∣∣∣∣∣v − v�
∣∣∣∣∣∣
∞ +

∣∣∣∣∣∣v� − v�m�

∣∣∣∣∣∣
∞ → 0 as � → ∞.

Consequently, we have that

∣∣∣∣∣∣v�m�

∣∣∣∣∣∣
m�

=
∣∣∣∣∣∣v�m�

∣∣∣∣∣∣
∞ → |||v|||∞ < ∞ as � → ∞.

Thanks to Corollary 3 and Proposition 4, we can extract another subsequence of
{v�m�

}�∈N which is weakly-∗ converging in BV (Ω). Therefore, v ∈ BV (Ω), and we
have in the distributional sense, that

Dv(φ) =

∫
Ω

∇pwv · φ dx+

∫
S+

[[v]] · φ ds ∀φ ∈ C∞
0 (Ω)d.

Note that Vk ⊂ Vj for j ≥ k and thus wk := v�m�
∈ Vk, k ∈ {m�, . . . ,m�+1 − 1}.

Consequently, we have |||v − wk|||k ≤ |||v − wk|||∞ =
∣∣∣∣∣∣v − v�m�

∣∣∣∣∣∣
∞ → 0 as k → ∞.

It remains to verify that v|Ω− ∈ H1
∂Ω∩∂Ω−(Ω−), i.e., that v is a restriction of a

function from H1
0 (Ω) to Ω−. To this end, we consider the conforming interpolation

Ikwk ∈ Vk ∩H1
0 (Ω) from Proposition 2, which also implies that ‖∇Ikwk‖L2(Ω) �

|||wk|||∞ < ∞ uniformly in k, i.e., there exists a weak limit ṽ ∈ H1
0 (Ω) of a sub-

sequence of {Ikwk}k∈N. On the other hand, it follows from Lemma 16(5) that
[[wk]] |∂E = 0 for all E ∈ G+

k (recall that Ω+
m�

⊂ Ω+
k for k ≥ m�). Consequently, the
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local estimate in Proposition 2 implies Ikwk = wk in Ω− ⊂ (Ω \ Ω+
k ). Therefore,

we have

‖∇v −∇Ikwk‖L2(Ω−) =
∥∥∇v −∇pwwk

∥∥
L2(Ω−)

≤ |||v − wk|||∞ → 0

as k → ∞ and thus v|Ω− = ṽ|Ω− .
Concluding, we have proved v ∈ V∞, which implies Lemma 14. �

Proof of Corollary 15. The assertion follows from Lemma 14 and the observation
that

|||v|||2∞ � B∞[v, v] and B∞[v, w] � |||v|||∞ |||w|||∞

for all v, w ∈ V∞. Indeed, the continuity follows with standard techniques us-
ing (3.2) and the coercivity is a consequence of

|||Πkv|||2∞ = |||Πkv|||2k � Bk[Πkv, Πkv] = B∞[Πkv, Πkv]

and Lemma 19. �

4. (Almost) best approximation property

In this section we shall prove that the solution u∞ ∈ V∞ of (3.3) is indeed
the limit of the discontinuous Galerkin solutions produced by ADGM. This is a
consequence of the density of spaces {Vk}k∈N0

in V∞ and the (almost) best ap-
proximation property of discontinuous Galerkin solutions; the latter generalises
[Gud10].

Lemma 20. Let u∞ ∈ V∞ be the solution of (3.3) and uk ∈ Vk be the DGFEM
approximation from (2.6) on Gk for some k ∈ N and u∞ the unique solution of the
limit problem from Corollary 15. Then, we have

|||u∞ − uk|||k � |||u∞ −Πku∞|||∞ +
〈f, uk −Πkuk〉Ω −Bk[Πku∞, uk −Πkuk]

|||uk −Πku∞|||k
.

Proof. Assume that uk �= Πku∞ ∈ Vk ∩ V∞ and set ψ = uk − Πku∞. Then, we
have from (2.7) that

α |||uk −Πku∞|||2k ≤ Bk[uk −Πku∞, ψ] = 〈f, ψ〉Ω −Bk[Πku∞, ψ]

= 〈f, Πkψ〉Ω + 〈f, ψ −Πkψ〉Ω −Bk[Πku∞, ψ]

=
(
B∞[u∞, Πkψ]−Bk[Πku∞, Πkψ]

)
+
(
〈f, ψ − Πkψ〉Ω −Bk[Πku∞, ψ − Πkψ]

)
≡ (I) + (II),
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using that Πkψ ∈ Vk ∩ V∞ from Lemma 16(7). For (I), we have, respectively,

(I) =

∫
Ω

∇pwu∞ · ∇pwΠkψ dx−
∫
S+

(
{{∇u∞}} · [[Πkψ]] + θ{{∇Πkψ}} · [[u∞]]

)
ds

+

∫
S̊+

(
β · [[u∞]] [[∇Πkψ]] + [[∇u∞]]β · [[Πkψ]]

)
ds

+

∫
Ω

γ
(
R∞([[u∞]]) + L∞(β · [[u∞]])

)
·
(
R∞([[Πkψ]]) + L∞(β · [[Πkψ]])

)
dx

+

∫
S+

σ

h+
[[u∞]] · [[Πkψ]] ds

−
∫
Ω

∇pwΠku∞ · ∇pwΠkψ dx

+

∫
Sk

(
{{∇Πku∞}} · [[Πkψ]] + θ{{∇Πkψ}} · [[Πku∞]]

)
ds

−
∫
S̊+

(
β · [[Πku∞]] [[∇Πkψ]] + [[∇Πku∞]]β · [[Πkψ]]

)
ds

−
∫
Ω

γ
(
Rk([[Πku∞]]) + Lk(β · [[Πku∞]])

)
·
(
Rk([[Πkψ]]) + Lk(β · [[Πkψ]])

)
dx

−
∫
S+

σ

hk
[[Πku∞]] · [[Πkψ]] ds

=

∫
Ω

∇pw(u∞ −Πku∞) · ∇pwΠkψ dx

−
∫
S+
k

{{∇(u∞ −Πku∞)}} · [[Πkψ]] ds− θ

∫
S+

{{∇Πkψ}} · [[u∞ −Πku∞]] ds

+

∫
S̊+

(
β · [[u∞ −Πku∞]] [[∇Πkψ]] + [[∇u∞ −∇Πku∞]]β · [[Πkψ]]

)
ds

+

∫
Ω

γ
(
R∞([[u∞ −Πku∞]]) + L∞(β · [[u∞ −Πku∞]])

)
·
(
R∞([[Πkψ]]) + L∞(β · [[Πkψ]])

)
dx

+

∫
S+
k

σ

hk
[[u∞ −Πku∞]] · [[Πkψ]] ds

� |||u∞ −Πku∞|||∞ |||Πkψ|||∞ = |||u∞ −Πku∞|||∞ |||Πkψ|||k
� |||u∞ −Πku∞|||∞ |||uk −Πku∞|||k ;

here we used that Πku∞,Πkψ ∈ Vk∩V∞, h∞ = hk on S+
k and that Πku∞ and Πkψ

are continuous on Ω \ Ω+
k , i.e., [[Πku∞]] = [[Πkψ]] = 0 on S+ \ S+

k , which follows

from Lemma 16. Note that this and [[Πku∞]] = [[Πkψ]] = 0 on ∂(Ω \ Ω+
k ) from

Lemma 16 also implies that Lk(Πkψ) = L∞(Πkψ) and Lk(Πku∞) = L∞(Πku∞)
as well as the corresponding relations between Rk and R∞; compare with (3.1).
Thus, the above estimate follows from the Cauchy–Schwarz inequality, application
of inverse inequalities in conjunction with the stability of the lifting operators (3.2),
and Lemma 17.
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Consequently, triangle inequality and the above imply

|||u∞ − uk|||k ≤ |||u∞ −Πku∞|||k + |||uk −Πku∞|||k
� |||u∞ −Πku∞|||k + |||u∞ −Πku∞|||∞

+
〈f, ψ −Πkψ〉Ω −Bk[Πku∞, ψ −Πkψ]

|||uk −Πku∞|||k
.

Thanks to |||u∞ −Πku∞|||k ≤ |||u∞ −Πku∞|||∞, this proves the assertion. �

The properties of the quasi-interpolation (3.4) allow for the consistency term in
Lemma 20 to be bounded by the a posteriori indicators of essentially the elements,
which will experience further refinements.

Lemma 21. Let u∞ ∈ V∞ be the solution of (3.3) and uk ∈ Vk be the DGFEM
approximation from (2.6) on Gk for some k ∈ N. Then, we have

〈f, uk −Πkuk〉Ω −Bk[Πku∞, uk −Πkuk]

|||uk −Πku∞|||k
�

( ∑
E∈Gk\G3+

k

Ek(Πku∞, E)2
)1/2

,

where G3+
k := {E ∈ Gk : Nk(E) ⊂ G++

k }.

Proof. Let vk := Πku∞ and φ := uk−Πkuk = uk−Πku∞−Πk(uk−Πku∞). Then,
using integration by parts, we have

〈f, φ〉Ω −Bk[vk, φ]

=

∫
Gk

(f +Δvk)φ dx−
∫
Sk

[[∇vk]] {{φ}} ds+
∫
Sk

θ{{∇φ}} [[vk]] ds

−
∫
S̊k

(
β · [[vk]] [[∇φ]] + [[∇vk]]β · [[φ]]

)
ds

−
∫
Ω

γ
(
Rk([[vk]]) + Lk(β · [[vk]])

)
·
(
Rk([[φ]]) + Lk(β · [[φ]])

)
dx

− σ

∫
Sk

h−1
k [[vk]] [[φ]] ds.

Thanks to properties of Πk (see Lemma 16), we have that [[vk]] |S ≡ 0 for S ∈ Sk\S+
k ,

[[vk]] |Ω\Ω+
k
≡ 0, φ|E ≡ 0 for E ∈ G++

k , and [[φ]] |S ≡ 0 for S ∈ S++
k . Therefore, we

have

〈f, φ〉Ω −Bk[vk, φ]

=

∫
Gk\G++

k

(f +Δvk)φ dx−
∫
Sk\S++

k

[[∇vk]] {{φ}} ds

+ θ

∫
S+
k

{{∇φ}} [[vk]] ds

−
∫
S̊+
k

β · [[vk]] [[∇φ]] ds−
∫
S̊k\S++

k

[[∇vk]]β · [[φ]] ds

−
∫
Ω

γ
(
Rk([[vk]]) + Lk(β · [[vk]])

)
·
(
Rk([[φ]]) + Lk(β · [[φ]])

)
dx

− σ

∫
S+
k \S++

k

h−1
k [[vk]] [[φ]] ds.

(4.1)
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The last term on the right-hand side of (4.1) can be estimated using the Cauchy–
Schwarz inequality; for the first two terms we use the interpolation estimates from
Corollary 18 for φ = ψ −Πkψ with ψ = uk −Πku∞ ∈ Vk as to obtain∫

Gk\G++
k

(f +Δvk)φ dx−
∫
Sk\S++

k

[[∇vk]] {{φ}} ds

�
[(∫

Gk\G++
k

h2
k|f+Δvk|2 dx

)1/2

+
(∫

Sk\S++
k

hk [[∇vk]]
2 ds

)1/2
]
|||uk −Πku∞|||k .

Moreover, from φ|E ≡ 0, E ∈ G++
k , we have that φ|ωk(S) ≡ 0 and thus {{∇φ}}|S ≡ 0

for all S ∈ S3+
k = S(G3+

k ). Therefore, by standard trace inequalities, inverse
estimates and Corollary 18, we have that∫

S+
k

{{∇φ}} [[vk]] ds =
∫
S+
k \S3+

k

{{∇φ}} [[vk]] ds �
(∫

S+
k \S3+

k

h−1
k [[vk]]

2 ds
)1/2

|||φ|||k .

A similar argument yields∫
S̊+
k

β · [[vk]] [[∇φ]] ds =

∫
S̊+
k \S3+

k

β · [[vk]] [[∇φ]] ds

� |β|
(∫

S̊+
k \S3+

k

h−1
k [[vk]]

2 ds
)1/2

|||φ|||k .

Finally, we have with (2.4c) and the local support of the local liftings, that∫
Ω

Rk([[vk]]) ·Rk([[φ]]) dx =

∫
Ω

( ∑
S∈S+

k

RS
k ([[vk]])

)
·
( ∑
S∈Sk\S++

k

RS
k ([[φ]])

)
dx

=

∫
G+
k \G++

k

Rk([[vk]]) ·Rk([[φ]]) dx

�
(∫

S+
k \S3+

k

h−1
k [[vk]]

2
ds

)1/2

|||φ|||k .

Similar bounds hold for the remaining terms in (4.1). Combining the above obser-
vations proves the desired assertion. �

In order to conclude convergence of the sequence of discrete discontinuous
Galerkin approximations from Lemma 21, we need to control the error estimator.
To this end, we shall use Verfürth’s bubble function technique.

Proposition 22. Let u∞ be the solution of (3.3). Then, for every E ∈ G−
k and

v ∈ Vk, k ∈ N, we have∫
E

h2
k|f +Δv|2 dx+

∫
∂E∩Ω

hk

[[
∇pwv

]]2
ds

�
∥∥∇pw(u∞ − v)

∥∥2
ωk(E)

+

∫
{S∈S+:S⊂ωk(E)}

h−1
+ [[u∞ − v]]

2
ds

+ osc(Nk(E), f)2;
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in particular, we also have

∑
E∈G−

k

∫
E

h2
k|f +Δv|2 dx+

∫
∂E∩Ω

hk

[[
∇pwv

]]2
ds

� |||u∞ − v|||2∞ +
∑

E∈G−
k

∑
E′∈ωk(E)

osc(E′, f)2.

Note that since v ∈ Vk �⊂ V∞ in general, the above terms may be equal to infinity.

Proof. The proof follows from standard techniques; compare, e.g., [KP03, BN10].
However, in order to keep the presentation self-contained, we provide a sketch of
the proof. For E ∈ G−

k , let φE ∈ H1
0 (E) be Verfürth’s element bubble function with

hd
E ‖∇qφ‖2L∞(E) � ‖∇qφ‖2E � h−2

E ‖q‖2E for all q ∈ Pr−1(E).(4.2)

Note that extending φE by zero to the whole domain Ω, we have that φE ∈ V∞,
since E ⊂ Ω−. Let fE ∈ Pr−1(E) an arbitrary polynomial. Observing that (fE +
Δv)φE ∈ C(Ω) and thus does not jump across faces, we have by equivalence of
norms on finite dimensional spaces and a scaled trace inequality, that∫

E

|fE +Δv|2 dx

�
∫
E

(fE +Δv)(fE +Δv)φE dx

= B∞[u∞ − v, (fE +Δv)φE ]−
∫
E

(f − fE)(fE +Δv)φE dx

�
∥∥∇pw(u∞ − v)

∥∥
E
‖∇(fE +Δv)φE‖E −

∫
S+

[[u∞ − v]] {{∇(fE +Δv)φE}} ds

+ ‖f − fE‖E ‖(fE +Δv)φE‖E .

From (4.2) and standard inverse estimates, we conclude that∣∣∣∣
∫
S+

[[u∞ − v]] {{∇(fE +Δv)φE}} ds
∣∣∣∣

≤
∑

S∈S+,S⊂E

∫
S

[[u∞ − v]]2 ds ‖∇(fE +Δv)φE‖L∞(E)

�
(∫

S+

hd−1
+ [[u∞ − v]]2 ds

)1/2

h
−1− d

2

E ‖fE +Δv‖E

�
(∫

S+

h−1
+ [[u∞ − v]]2 ds

)1/2

h−1
E ‖fE +Δv‖E ,

since h+ ≤ hE on E. Therefore, we arrive at∫
E

h2
k|fE +Δv|2 dx �

∥∥∇pw(u∞ − v)
∥∥2
E
+

∑
S∈S+,S⊂E

∫
S

h−1
+ [[u∞ − v]]2 ds

+ h2
E ‖f − fE‖2E .

(4.3)

Thanks to the definition of G−
k , the same bound applies for all E′ ∈ Nk(E).

We now turn to investigate the jump terms. To this end, we fix one S ∈ S̊k,
S ⊂ E and let E′ ∈ Nk(E) with S = E ∩ E′. Let φS ∈ H1

0 (ωk(S)) be Verfürth’s
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face bubble function. Note that extending φS by zero to Ω, we have φS ∈ V∞ since
ωk(S) ⊂ Ω−. For each q ∈ Pr−1(S), there exists some extension q̃ ∈ Pr−1(ωk(S))
such that

hd
E ‖∇q̃φS‖L∞(ωk(S)) � ‖q̃φS‖2ωk(S) � hE

∫
S

|q|2 ds.(4.4)

Noting that [[∇v]] ∈ Pr−1(S), we have, by the equivalence of norms on finite dimen-
sional spaces, that∫

S

[[∇v]]
2
ds �

∫
S

[[∇v]]
2
φS ds

= B∞[u∞ − v, [̃[∇v]]φS ]−
∫
ωk(S)

(f +Δv)[̃[∇v]]φS dx

�
∥∥∇pw(u∞ − v)

∥∥
ωk(S)

∥∥∥∇[̃[∇v]]φS

∥∥∥
ωk(S)

+

∫
S+

[[u∞ − v]] {{∇[̃[∇v]]φS}} ds

+
(
‖f +Δv‖2E + ‖f +Δv‖2E′

) 1
2

∥∥∥[̃[∇v]]φS

∥∥∥
ωk(S)

.

Similarly, as for the element residual, we have that∫
S+

[[u∞ − v]] {{∇[̃[∇v]]φS}} ds

�
( ∑

S′∈S+,S′⊂ωk(S)

h−1
+ [[u∞ − v]]

2
) 1

2
(∫

S

hE [[∇v]]
2
ds

) 1
2

,

using (4.4). Again with (4.4), we obtain∫
S

hE [[∇v]]2 ds �
∥∥∇pw(u∞ − v)

∥∥2
ωk(S)

+
∑

S′∈S+,S′⊂ωk(S)

∫
S

h−1
+ [[u∞ − v]]2 ds

+ h2
E ‖f +Δv‖2E + h2

E′ ‖f +Δv‖2E′ .

Finally, applying the bound (4.3) to E,E′ ∈ Nk(E), we have proved the first
assertion.

The second assertion follows, then, by summing over all E ∈ G−
k together with

an observation from [MSV08], which we sketch here in order to keep this work
self-contained. Let M := max{#Nk(E) : E ∈ G−

k } be the maximal number of

neighbours, then G−
k can be split into M2 + 1 subsets G−

k,0, . . . ,G
−
k,M2 such that for

each j, we have that E′, E ∈ G−
k,j with E �= E′ implies that Nk(E) ∩ Nk(E

′) = ∅.
Consequently, we have

∑
E∈G−

k

∥∥∇pw(u∞ − v)
∥∥2
ωk(E)

≤
M2∑
j=0

∑
E∈G−

k,j

∥∥∇pw(u∞ − v)
∥∥2
ωk(E)

≤ (M2 + 1)
∥∥∇pw(u∞ − v)

∥∥2
Ω−

k

.

Together with similar estimates for the jump terms and the oscillations the second
assertion follows from the first one. �
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Theorem 23. Let u∞ the solution of (3.3) and uk ∈ Vk be the DGFEM approxi-
mation from (2.6) on Gk for some k ∈ N. Then,

|||u∞ − uk|||k → 0 as k → ∞.

Proof. Thanks to Lemma 20, Lemma 19 and Lemma 21, we have that

lim
k→∞

|||u∞ − uk|||2k � lim
k→∞

|||u∞ − vk|||2∞ +
∑

E∈Gk\G3+
k

Ek(vk, E)2

= lim
k→∞

∑
E∈Gk\G3+

k

Ek(vk, E)2,

where vk := Πku∞. Using Lemma 11, we have∣∣Ω \
(
Ω−

k ∪ Ω3+
k

)∣∣ ≤ ∣∣Ω \ (Ω−
k ∪ Ω++

k )
∣∣+ |Ω++

k \ Ω3+
k |

≤
∣∣Ω�

k

∣∣+ |Ω+ \ Ω3+
k | → 0,

as k → ∞. Indeed, for k ∈ N, it follows from Lemma 10 and #G+
k < ∞, that there

exists K = K(k), such that G+
k ⊂ G3+

K , i.e., |Ω+ \Ω3+
K | ≤ |Ω+ \Ω+

k | → 0 as k → ∞.

Thanks to monotonicity we conclude that |Ω+ \ Ω3+
k | → 0 as k → ∞. We next

show that this implies ∑
E∈Gk\(G−

k ∪G3+
k )

Ek(vk, E)2 → 0.

Lemma 19 implies that |||u∞ − vk|||∞ → 0 and, thus, the interior residual and the
gradient jumps part of the estimator vanish due to uniform integrability. Moreover,
it follows from Proposition 12 that∫

S(Gk\(G−
k ∪G3+

k ))

h−1
k [[vk]]

2 ds �
∫
S(Gk\G3+

k )

h−1
k [[u∞]]2 ds+ |||u∞ − vk|||2k

≤
∫
S(G+\G3+

k )

h−1
+ [[u∞]]2 ds+ |||u∞ − vk|||2k .

The last term on the right-hand side of the above estimate vanishes thanks to
Lemma 19. Again, letting K = K(k), such that G+

k ⊂ G3+
K , we have∫

S(G+\G3+
K(k)

)

h−1
+ [[u∞]]

2
ds ≤

∫
S(G+\G+

k )

h−1
+ [[u∞]]

2
ds → 0, as k → ∞.

Thanks to monotonicity, we thus conclude
∫
S(G+\G3+

k )
h−1
+ [[u∞]]2 ds → 0, as k → ∞.

On the remaining elements G−
k , it follows from Proposition 22 that∑

E∈G−
k

Ek(vk, E)2 � |||u∞ − vk|||2∞ +
∑

E∈G−
k

osc(Nk(E), f)2.

The first term on the right-hand side vanishes due to Lemma 19. For the second
term we observe that |

⋃
{ωk(E) : E ∈ G−

k }| � |Ω−
k |, depending on the shape

regularity of G0 and, therefore, it vanishes since∥∥∥hkχΩ−
k

∥∥∥
L∞(Ω)

→ 0 as k → ∞,(4.5)

thanks to Lemma 11. �
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5. Proof of the main result

We are now in the position to prove that the error estimator vanishes, following
the ideas of [MSV08]. This in turn implies that the sequence of discontinuous
Galerkin approximations produced by ADGM indeed converges to the exact solution
of (2.1).

Lemma 24. We have that

Ek(G−
k ) → 0, as k → ∞.

Proof. Thanks to Proposition 22, we have

∑
E∈G−

k

∫
E

h2
k|f +Δuk|2 dx+

∫
∂E∩Ω

hk [[∇uk]]
2 ds

� |||u∞ − uk|||2∞ +
∑

E∈G−
k

osc(Nk(E), f)2.

The right-hand side vanishes thanks to Theorem 23 and (4.5).
It remains to prove that∫

S(G−
k )

h−1
k [[uk]]

2 ds → 0, as k → ∞.

By definition, Ω−
k ⊂ Ω \ Ω+

k and, thanks to Lemma 16(5), we have that Πku∞ ∈
C(Ω \ Ω+

k ). Therefore, we conclude that∫
S(G−

k )

h−1
k [[uk]]

2 ds =

∫
S(G−

k )

h−1
k [[uk −Πku∞]]2 ds ≤ |||uk −Πku∞|||k → 0,

as k → ∞; see Lemma 19 and Theorem 23. �

Lemma 25. We have that

lim
k→∞

Ek(G�
k) = 0.

Proof. We conclude from the lower bound (Proposition 6) that

∑
E∈G�

k

∫
E

h2
k|f +Δuk|2 dx+

∫
∂E

hk [[∇uk]]
2
ds

�
∑
E∈G�

k

‖u− uk‖2ωk(E) +
∥∥∇u−∇pwuk

∥∥2
ωk(E)

+ osc(Nk(E), f)2

�
∑
E∈G�

k

{
‖u‖2ωk(E) + ‖u∞ − uk‖2ωk(E) + ‖u∞‖2ωk(E)

+ ‖∇u‖2ωk(E) +
∥∥∇pwu∞ −∇pwuk

∥∥2
ωk(E)

+
∥∥∇pwu∞

∥∥2
ωk(E)

+ osc(Nk(E), f)2
}
.

This vanishes as k → ∞ thanks to Theorem 23 and Lemma 11, together with the
uniform integrability of the terms involving u and u∞. Note that

∣∣⋃{ωk(E) : E ∈
G�
k}

∣∣ � |Ω�
k|, with the constant depending on the shape regularity of G0.
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It remains to prove ∫
S(G�

k)

h−1
k [[uk]]

2
ds → 0, as k → ∞.

To this end, we observe that∫
S(G�

k)

h−1
k [[uk]]

2
ds =

∫
S(G�

k)

h−1
k [[uk −Πku∞]]

2
ds+

∫
S(G�

k)

h−1
k [[Πku∞]]

2
ds

≤ 1

σ̄
|||uk −Πku∞|||2k +

∫
S(G�

k)

h−1
k [[Πku∞]]

2
ds.

As in the proof of Lemma 24, we have that the first term vanishes as k → ∞.
Thanks to Lemma 10, there exists �(k) ≥ K(k) ≥ k such that G+

k ⊂ G++
K(k) and

G+
K(k) ⊂ G++

�(k). Consequently, we have that [[Π�u∞]] |S = 0 for all S ∈ Gk; see

Lemma 16(5). Therefore, we conclude from Lemma 19 that

σ

∫
S(G�

k)

h−1
k [[Πku∞]]2 ds = σ

∫
S(G�

k)

h−1
k [[Πku∞ −Π�u∞]]2 ds

� |||Πku∞ − u∞|||2k + |||u∞ −Π�u∞|||2� → 0,

as k → ∞. �

Lemma 26. We have

Ek(G++
k ) → 0 as k → ∞.

Proof.

Step 1. By definition, elements in G++
k will not be subdivided, i.e., we have that

Mk ⊂ Gk \ G++
k ; compare with (2.9). As a consequence of Lemmas 24 and 25, we

conclude from (2.8) for all E ∈ G++
k that

Ek(E) ≤ lim
k→∞

g(Ek(Mk)) = lim
k→∞

g(Ek(G−
k ∪ G�

k)) → 0,(5.1)

as k → ∞. We shall reformulate the above elementwise convergence in an integral
framework, in order to conclude Ek(G++

k ) → 0 as k → ∞ via a generalised version of
the dominated convergence theorem. To this end, we shall consider some properties
of the error indicators.

Step 2. Thanks to the definition of G++
k , we have for all E ∈ G++

k , that ωk(E) =
ω�(E) =: ω(E) and Nk(E) = N�(E) = N(E) for all � ≥ k. Therefore, we obtain by
the lower bound, Proposition 6, that

Ek(E)2 � |||uk − u|||2N(E) + osc(N(E), f)2

� |||uk − u∞|||2N(E) + ‖u∞‖2N(E) + ‖u‖2H1(ω(E)) + ‖f‖2ω(E)

=: |||uk − u∞|||2N(E) + C2
E.

(5.2)

Arguing as in the proof of Proposition 22, we can conclude from the local estimate
that ∑

E∈G++
k

C2
E � |||u∞|||2∞ + ‖u‖2H1(Ω) + ‖f‖2L2(Ω) < ∞(5.3)

independently of k.
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Step 3. We shall now reformulate Ek(G++
k ) in integral form. Note that, thanks to

Lemma 10, we have that G+ =
⋃

k∈N0
G+
k =

⋃
k∈N0

G++
k , and also that the sequence

{G++
k }k∈N0

is nested. For x ∈ Ω+, let

� = �(x) := min{k ∈ N0 : there exists E ∈ G++
k such that x ∈ E}.

Then, we define

εk(x) := Mk(x) := 0 for k < �

and

εk(x) :=
1

|E|E
2
k(E), Mk :=

1

|E|
(
|||uk − u∞|||2N(E) + C2

E

)
for k ≥ �.

Consequently, for any k ∈ N0, we have

Ek(G++
k )2 =

∫
Ω+

εk(x) dx.

Moreover, thanks to the fact that the sequence {G++
k }k∈N0

is nested, we conclude
from (5.1) that

lim
k→∞

εk(x) = lim
k→∞

1

|E|E
2
k(E) = 0.

It follows from (5.2) and (5.3) that Mk is an integrable majorant for εk.

Step 4. We shall show that the majorants {Mk}k∈N0
converge in L1(Ω+) to

M(x) :=
1

|E|C
2
E for x ∈ E and E ∈ G+.

Then the assertion follows from a generalised majorised convergence theorem; see
[Zei90, Appendix (19a)]. In fact, by the definition of Mk, we have that

‖Mk −M‖L1(Ω+) =
∑

E∈G++
k

‖Mk −M‖L1(E) +
∑

E∈G+\G++
k

‖M‖L1(E) .

The latter term vanishes since it is the tail of a converging series (compare with (5.3))
and for the former term, we have, thanks to Theorem 23, that∑

E∈G++
k

‖Mk −M‖L1(E) =
∑

E∈G++
k

|||uk − u∞|||2N(E) � |||uk − u∞|||k → 0

as k → ∞. �

Proof of Theorem 9. We have

G++
k ∪ G�

k ∪ G−
k = Gk.

Therefore, the claim follows from Lemmas 24, 25, and 26 together with Proposi-
tion 5. �
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