Convergence of adaptive discontinuous Galerkin methods
HTML articles powered by AMS MathViewer
- by Christian Kreuzer and Emmanuil H. Georgoulis;
- Math. Comp. 87 (2018), 2611-2640
- DOI: https://doi.org/10.1090/mcom/3318
- Published electronically: February 26, 2018
- PDF | Request permission
Corrigendum: Math. Comp. 90 (2021), 637-640.
Abstract:
We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707–737].References
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Mark Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal. 45 (2007), no. 4, 1777–1798. MR 2338409, DOI 10.1137/060665993
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Eberhard Bänsch, Local mesh refinement in $2$ and $3$ dimensions, Impact Comput. Sci. Engrg. 3 (1991), no. 3, 181–191. MR 1141298, DOI 10.1016/0899-8248(91)90006-G
- Liudmila Belenki, Lars Diening, and Christian Kreuzer, Optimality of an adaptive finite element method for the $p$-Laplacian equation, IMA J. Numer. Anal. 32 (2012), no. 2, 484–510. MR 2911397, DOI 10.1093/imanum/drr016
- Rommel Bustinza, Gabriel N. Gatica, and Bernardo Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems, J. Sci. Comput. 22/23 (2005), 147–185. MR 2142193, DOI 10.1007/s10915-004-4137-5
- Roland Becker, Peter Hansbo, and Mats G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 5-6, 723–733. MR 1952357, DOI 10.1016/S0045-7825(02)00593-5
- Andrea Bonito and Ricardo H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal. 48 (2010), no. 2, 734–771. MR 2670003, DOI 10.1137/08072838X
- Annalisa Buffa and Christoph Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer. Anal. 29 (2009), no. 4, 827–855. MR 2557047, DOI 10.1093/imanum/drn038
- Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. MR 1974504, DOI 10.1137/S0036142902401311
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376, DOI 10.1007/978-1-4757-3658-8
- C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), no. 6, 1195–1253. MR 3170325, DOI 10.1016/j.camwa.2013.12.003
- Carsten Carstensen, Thirupathi Gudi, and Max Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Numer. Math. 112 (2009), no. 3, 363–379. MR 2501309, DOI 10.1007/s00211-009-0223-9
- Carsten Carstensen, Dietmar Gallistl, and Mira Schedensack, Discrete reliability for Crouzeix-Raviart FEMs, SIAM J. Numer. Anal. 51 (2013), no. 5, 2935–2955. MR 3121763, DOI 10.1137/130915856
- J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal. 46 (2008), no. 5, 2524–2550. MR 2421046, DOI 10.1137/07069047X
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Jim Douglas Jr. and Todd Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975) Lecture Notes in Phys., Vol. 58, Springer, Berlin-New York, 1976, pp. 207–216. MR 440955
- Alan Demlow and Emmanuil H. Georgoulis, Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 50 (2012), no. 5, 2159–2181. MR 3022214, DOI 10.1137/110846397
- Lars Diening and Christian Kreuzer, Linear convergence of an adaptive finite element method for the $p$-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), no. 2, 614–638. MR 2383205, DOI 10.1137/070681508
- Lars Diening, Christian Kreuzer, and Rob Stevenson, Instance optimality of the adaptive maximum strategy, Found. Comput. Math. 16 (2016), no. 1, 33–68. MR 3451423, DOI 10.1007/s10208-014-9236-6
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Daniele Antonio Di Pietro and Alexandre Ern, Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148, DOI 10.1007/978-3-642-22980-0
- Alexandre Ern, Annette F. Stephansen, and Martin Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, J. Comput. Appl. Math. 234 (2010), no. 1, 114–130. MR 2601287, DOI 10.1016/j.cam.2009.12.009
- Alexandre Ern and Martin Vohralík, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids, C. R. Math. Acad. Sci. Paris 347 (2009), no. 7-8, 441–444 (English, with English and French summaries). MR 2537245, DOI 10.1016/j.crma.2009.01.017
- Thirupathi Gudi and Johnny Guzmán, Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 3, 753–764. MR 3264333, DOI 10.1051/m2an/2013119
- Thirupathi Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2169–2189. MR 2684360, DOI 10.1090/S0025-5718-10-02360-4
- R. H. W. Hoppe, G. Kanschat, and T. Warburton, Convergence analysis of an adaptive interior penalty discontinuous Galerkin method, SIAM J. Numer. Anal. 47 (2008/09), no. 1, 534–550. MR 2475951, DOI 10.1137/070704599
- Paul Houston, Dominik Schötzau, and Thomas P. Wihler, Energy norm a posteriori error estimation of $hp$-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci. 17 (2007), no. 1, 33–62. MR 2290408, DOI 10.1142/S0218202507001826
- L. John, M. Neilan, and I. Smears, Stable discontinuous Galerkin FEM without penalty parameters, pp. 165–173, Springer International Publishing, Cham, 2016.
- Igor Kossaczký, A recursive approach to local mesh refinement in two and three dimensions, J. Comput. Appl. Math. 55 (1994), no. 3, 275–288. MR 1329875, DOI 10.1016/0377-0427(94)90034-5
- Ohannes A. Karakashian and Frederic Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374–2399. MR 2034620, DOI 10.1137/S0036142902405217
- Ohannes A. Karakashian and Frederic Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal. 45 (2007), no. 2, 641–665. MR 2300291, DOI 10.1137/05063979X
- Christian Kreuzer and Mira Schedensack, Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems, IMA J. Numer. Anal. 36 (2016), no. 2, 593–617. MR 3483097, DOI 10.1093/imanum/drv019
- Christian Kreuzer and Kunibert G. Siebert, Decay rates of adaptive finite elements with Dörfler marking, Numer. Math. 117 (2011), no. 4, 679–716. MR 2776915, DOI 10.1007/s00211-010-0324-5
- Joseph M. Maubach, Local bisection refinement for $n$-simplicial grids generated by reflection, SIAM J. Sci. Comput. 16 (1995), no. 1, 210–227. MR 1311687, DOI 10.1137/0916014
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, DOI 10.1137/S0036144502409093
- Pedro Morin, Kunibert G. Siebert, and Andreas Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci. 18 (2008), no. 5, 707–737. MR 2413035, DOI 10.1142/S0218202508002838
- Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Theory of adaptive finite element methods: an introduction, Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 409–542. MR 2648380, DOI 10.1007/978-3-642-03413-8_{1}2
- Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3 (1999), no. 3-4, 337–360 (2000). MR 1750076, DOI 10.1023/A:1011591328604
- Kunibert G. Siebert, A convergence proof for adaptive finite elements without lower bound, IMA J. Numer. Anal. 31 (2011), no. 3, 947–970. MR 2832786, DOI 10.1093/imanum/drq001
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- C. T. Traxler, An algorithm for adaptive mesh refinement in $n$ dimensions, Computing 59 (1997), no. 2, 115–137. MR 1475530, DOI 10.1007/BF02684475
- R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques, Adv. Numer. Math., John Wiley, Chichester, UK, 1996.
- Rüdiger Verfürth, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. MR 3059294, DOI 10.1093/acprof:oso/9780199679423.001.0001
- Eberhard Zeidler, Nonlinear functional analysis and its applications. II/B, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR 1033498, DOI 10.1007/978-1-4612-0985-0
- Liang Zhu, Stefano Giani, Paul Houston, and Dominik Schötzau, Energy norm a posteriori error estimation for $hp$-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions, Math. Models Methods Appl. Sci. 21 (2011), no. 2, 267–306. MR 2776669, DOI 10.1142/S0218202511005052
Bibliographic Information
- Christian Kreuzer
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
- MR Author ID: 833122
- ORCID: 0000-0003-2923-4428
- Email: christian.kreuzer@tu-dortmund.de
- Emmanuil H. Georgoulis
- Affiliation: Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom; and Department of Mathematics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 157 80, Greece
- Email: Emmanuil.Georgoulis@le.ac.uk
- Received by editor(s): December 13, 2016
- Received by editor(s) in revised form: June 27, 2017
- Published electronically: February 26, 2018
- Additional Notes: The research of Christian Kreuzer was supported by DFG research grant KR 3984/5-1.
Emmanuil H. Georgoulis acknowledges support by the Leverhulme Trust. - © Copyright 2018 American Mathematical Society
- Journal: Math. Comp. 87 (2018), 2611-2640
- MSC (2010): Primary 65N30, 65N12, 65N50, 65N15
- DOI: https://doi.org/10.1090/mcom/3318
- MathSciNet review: 3834679